Sains Malaysiana 49(9)(2020): 2073-2081
http://dx.doi.org/10.17576/jsm-2020-4909-05
Effects
of Sulphuric Acid Concentrations during Solvolysis Process of Carbon Fiber Reinforced Epoxy
Composite
(Kesan Kepekatan Asid Sulfurik semasa Proses Solvolisis Komposit Epoksi yang Diperkuat oleh Gentian
Karbon)
MUHAMMAD
FALAQ MUHAMMAD FAISAL1, AZMAN HASSAN1*, KHONG WUI GAN2,
MOHD NAZRUL ROSLAN3 & AZRIN HANI ABDUL RASHID3
1School of Chemical and
Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai,
Johor Darul Takzim, Malaysia
2University of Southampton
Malaysia, 79200 Iskandar Puteri, Johor Darul Takzim, Malaysia
3Department of Mechanical
Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 84600 Pagoh,
Johor Darul Takzim, Malaysia
Received: 15
January 2020/Accepted: 10
May 2020
ABSTRACT
Developing
a cost-effective technique of reclaiming carbon fibers without significantly
deteriorating their quality has gained much importance. This paper reports on
reclaiming carbon fibers from the carbon fiber reinforced polymer (CFRP) by solvolysis technique using sulphuric acid. The main objective of this work was to determine the
lowest sulphuric acid concentration which can remove
the epoxy resin from the composites, at room temperature and atmospheric
pressure. The sulphuric acid concentrations used
ranged from 11 to 18 mol L-1 with 30 min
reaction time and 50 mL volume. Thermogravimetric analysis (TGA) showed that the fiber content of the composites is 68% by
weight. From the solvolysis process, mass of decomposed epoxy resin decreased with decreasing acid
concentrations. SEM images show that the residual epoxy adhering to the fibers after solvolysis increased with decreasing molarity. Acid
concentrations lower than 15 M were found to be not effective in removing the
epoxy resin from the carbon fibers. The tensile strength and Young’s modulus of
all the reclaimed fibers is marginally lower than the untreated carbon fibers.
The tensile strength was found to increase as the acid concentration decreases
with fibers in 15 M acid showed the highest tensile strength of 3.43 GPa (99.1% strength retention). Similar trend was also
observed for Young’s modulus. The study shows the potential of sulphuric acid to reclaim carbon fiber from the CFRP with
15 M giving the optimum properties in terms of tensile properties retention and
epoxy resin decomposition.
Keywords:
Carbon fiber reinforced polymer; epoxy resin; solvolysis; sulphuric acid; tensile properties
ABSTRAK
Penghasilan teknik yang kos efektif untuk memperoleh
gentian karbon tanpa mengurangkan kualiti secara ketara telah menjadi semakin
penting. Kertas ini melaporkan
tentang perolehan gentian karbon daripada gentian karbon diperkuatkan dengan
polimer (CFRP) melalui teknik solvolisis menggunakan asid sulfurik. Objektif
utama kerja ini adalah untuk menentukan kepekatan asid sulfurik terendah yang
boleh menguraikan resin epoksi daripada komposit pada suhu bilik dan tekanan
atmosfera. Kepekatan asid sulfurik yang digunakan dalam julat antara 11 dan 18 mol L-1dengan masa tindak balas 30 min dan isi padu 50 mL. Analisis Termogravimetrik (TGA) menunjukkan
bahawa kandungan gentian adalah 68% daripada berat komposit. Daripada proses
solvolisis, jisim resin epoksi yang terurai berkurangan dengan berkurangnya
kepekatan asid. Imej SEM menunjukkan baki epoksi yang melekat pada gentian selepas solvolis bertambah dengan berkurangnya molariti.
Pada kepekatan asid kurang daripada 15 M, didapati tidak berkesan dalam
menguraikan resin epoksi daripada gentian karbon. Kekuatan tegangan dan modulus Young untuk semua gentian yang
diperoleh adalah sedikit rendah daripada gentian karbon yang tidak
dirawat. Kekuatan tegangan menunjukkan
peningkatan apabila kepekatan asid berkurang dengan gentian dalam asid 15 M menunjukkan kekuatan tegangan tertinggi
iaitu 3.43 GPa (99.1% pengekalan kekuatan). Aliran sama ditunjukkan untuk
modulus Young. Kajian ini menunjukkan asid sulfurik berpotensi untuk memperoleh
gentian karbon daripada CFRP dengan 15 M memberikan keadaan paling optimum daripada segi pengekalan
kekuatan tegangan dan pemisahan resin epoksi.
Kata kunci: Asid
sulfurik; polimer diperkuat gentian karbon dikitar semula; resin epoksi; sifat
mekanikal; solvolis
REFERENCES
Asmatulu, E., Twomey, J.
& Overcash, M. 2014. Recycling of fiber-reinforced composites and direct
structural composite recycling concept. Journal
of Composite Materials 48(5): 593-608.
Bai, Y., Wang, Z. &
Feng, L. 2010a. Chemical
recycling of carbon fibres reinforced epoxy resin
composites in oxygen in supercritical water. Materials and Design 31: 999-1002.
Bai, Y., Wang, Z. &
Feng, L. 2010b. Interface
properties of carbon fiber/epoxy resin composite improved by supercritical
water and oxygen in supercritical water. Materials
and Design 3: 1613-1616.
Cunliffe, A.M.,
Jones, N. & Williams, P.T. 2003. Recycling of fibre-reinforced
polymeric waste by pyrolysis: Thermo-gravimetric
and bench-scale investigations. Journal of Analytical and Applied Pyrolysis 70: 315-338.
Dang, W., Kubouchi,
M., Yamamoto, S., Sembokuya, H. & Tsuda, K. 2002. An approach to chemical recycling of epoxy
resin with amine using nitric acid. Polymer 43: 2953-2958.
Das, M. & Varughese,
S. 2016. A novel sonochemical approach for enhanced
recovery of carbon fiber from CFRP waste using mild acid-peroxide mixture. ACS Sustainable Chemistry & Engineering 4: 2080-2087.
Deng, J., Xu, L., Zhang, L., Peng, J., Guo, S., Liu, J. & Koppala,
S. 2019. Recycling of carbon fibers from CFRP waste by microwave thermolysis. Processes 7(207): 1-12.
Holmes, M. 2014. Global carbon fibre market remains on upward trend. Reinforced Plastics 58(6):
38-45.
Jiang, G. & Pickering, S.J. 2016.
Structure-property relationship of recycled carbon fibres revealed by pyrolysis recycling process. Journal
of Material Science 51: 1949-1958.
Jiang, J., Deng, G., Chen, X., Gao, X., Guo, Q., Xu, C. & Zhou, L. 2017. On the successful
chemical recycling of carbon fiber/epoxy resin composites under mild condition. Composites Science and Technology 151: 243-251.
Jiang, G., Pickering, S.J., Lester, E.H., Turner,
T.A., Wong, K.H. & Warrior, N.A. 2009 Characterisation of carbon fibres/epoxy resin composites using
supercritical n-propanol. Composites Science and Technology 69:
192-198.
Ismail, N.H., Mohammad, M.H.B. & Jaafar, M. 2018. Multi-walled carbon nanotubes/woven kenaf fabric-reinforced epoxy laminated composites. Sains Malaysiana 47(3): 563-569.
Keith, M.J., Ingram, A. & Leeke,
G.A. 2018. Recycling carbon fibre with an
acetone/water solvent and zinc chloride catalyst: Resin degradation and fibre characterization. In SAMPE Europe Conference. Southampton, UK. 11‐13 September.
Kouparitsas, C.E., Kartalis,
C.N., Varelidis, P.C., Tsenoglou,
C.J. & Papaspyrides, C.D. 2002. Recycling of the
fibrous fraction of reinforced thermoset composites. Polymer Composites 23: 682-689.
Li, X., Bai, R. & McKechnie,
J. 2016. Environmental and financial performance of mechanical recycling of
carbon fibre reinforced polymers and comparison with
conventional disposal routes. Journal of Cleaner Production 127:
451-460.
Meng, F., McKechnie,
J., Turner, T.A. & Pickering, S.J. 2017. Energy and environmental reuse of
fluidized bed recycled carbon fibres. Composites: Part A 100: 206-214.
Mohd Ishak, Z.A.
2019. Recycled carbon fibre: A promising future. eXPRESS Polymer Letters 13(12): 1026-1026.
Oliveux, G., Dandy, L.O. & Leeke,
G.A. 2015. Current status of recycling carbon fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science 72: 61-99.
Onwudili, J.A., Insura, N. & Williams, P.T. 2013. Autoclave
pyrolysis of carbon reinforced composite plastic waste from carbon fibre and chemicals recovery. Journal of the Energy Institute 86(4): 227-232.
Palmer, J., Savage, L., Ghita,
O.R. & Evans, K.E. 2010. Sheet moulding compound
(SMC) from carbon fibre recyclate. Composites: Part A 41: 1232-1237.
Palmer, J., Ghita, O.R.,
Savage, L. & Evans, K.E. 2009. Successful closed-loop recycling of
thermoset composites. Composites: Part A 40: 490-498.
Pickering, S.J. 2006. Recycling technologies for
thermoset composite materials-current
status. Composites: Part A 37: 1206-1215.
Princaud, M., Aymonier,
C., Loppinet-Serani, A., Perry, N. & Sonnemann, G. 2014. Environmental feasibility of the recycling of carbon
fibers from CFRPs by solvolysis using supercritical
water. Sustainable Chemistry &
Engineering 2: 1498-1502.
Rybicka, J., Tiwari, A. & Leeke,
G.A. 2016. Technology readiness level assessment of composites recycling
technologies. Journal of Cleaner
Production 112: 1001-1012.
Shibata, K., Nakagawa, M., Quitain,
A. & Sasaki, M. 2013. CFRP recycling using depolymerization of acid anhydride cured epoxy resin. In 9th International Conference on Composite Materials, Proceedings. pp. 8511-8518.
Su, D.H. 2014. Application of fiber reinforced
composites for sports instruments. Applied
Mechanics and Materials 687-691(2014): 4256-4259.
Vazquez-Moreno, J.M., Sanchez-Hidalgo, R., Sanz-Horcajo, E., Vina, J., Verdejo, R. & Lopez-Manchado,
M.A. 2019. Preparation and mechanical properties of grapheme/carbon
fiber-reinforced hierarchical polymer composites. Journal of Composite Science 3(30): 1-8.
Wang, Y., Cui, X., Ge, H., Yang,
Y., Wang, Y., Zhang, C., Li, J., Deng, T., Qin, Z. & Hou, X. 2015. Chemical recycling of carbon fiber
reinforced epoxy resin composites via selective cleavage of the carbon-nitrogen
bond. ACS Sustainable Chemistry & Engineering 3: 3332-3337.
Witik, R.A., Teuscher, R.,
Michaud, V., Ludwig, C. & Manson, J.E. 2013. Carbon fibre reinforced
composite waste: An environment
assessment of recycling, energy recovery and landfilling. Composites: Part A 49: 89-99.
Yan, H., Lu, C., Jing, D. & Hou,
X. 2014. Chemical degradation of amine-cured DGEBA epoxy resin in supercritical
1-propanol for recycling carbon fiber from composites. Chinese Journal of Polymer Science 32: 1550-1563.
Yang, P., Zhou, Q., Li, X.Y.,
Yang, K.K. & Wang, Y.Z. 2014. Chemical recycling of fiber-reinforced epoxy resin using a polyethylene
glycol/NaOH system. Journal of Reinforced Plastics & Composites 33(22): 2106-2114.
Zhao, J., Li, G., Wang, Z. & Zhao, X.L. 2019.
Fatigue behavior of concrete beams reinforced with glass and carbon-fiber
reinforced polymer (GFRP/CFRP) bars after exposure to elevated temperatures. Composite Structures 229(2019): 1-18.
*Corresponding author; email:
azmanh@cheme.utm.my
|