Sains Malaysiana 49(9)(2020): 2101-2111

http://dx.doi.org/10.17576/jsm-2020-4909-08

 

Sifat Mekanik dan Terma Nanokomposit Asid Polilaktik/Cecair Getah Asli/Polianilina Diperkukuh Berpenguat Grafin pada Kandungan Rendah

 (Mechanical and Thermal Properties of Toughened Polylactic Acid/Liquid Natural Rubber/Polyaniline Nanocomposites Reinforced Graphene at Low Loading)

 

DALILA SHAHDAN1, RUEY SHAN CHEN1,2* & SAHRIM AHMAD1,2

 

1Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Materials Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 15 January 2020/Accepted: 15 April 2020

 

ABSTRAK

Kajian ini dijalankan bagi mengkaji kesan penambahan bahan pengisi grafin berplat nano (GNP) ke atas sifat mekanik dan terma bagi nanokomposit polilaktik asid (PLA)/cecair getah asli (LNR)/polianilina (PANI). Nanokomposit PLA/LNR/PANI berpengisi GNP disediakan melalui kaedah adunan leburan dengan menggunakan mesin pengadun dalaman. Tahap pengisian kandungan bahan pengisi GNP dipelbagaikan daripada 0.2 sehingga 1.0 % bt. Spesimen yang telah dicirikan melalui ujian mekanik serta analisis termogravimetri (TGA), kalorimetri imbasan pembezaan (DSC) dan analisis kekonduksian terma (TCA) menunjukkan peningkatan sifat yang positif dengan penambahan GNP pada kandungan rendah dalam matriks polimer. Keputusan sifat regangan, hentaman dan kestabilan terma menyatakan kandungan optimum dicapai pada 0.4 % bt. Berdasarkan ujian lenturan dan TCA pula, peningkatan optimum masing-masing didapati pada kandungan yang berbeza iaitu 0.6 dan 0.8 % bt. GNP.

 

Kata kunci: Grafin berplat nano; kekonduksian terma; kestabilan terma; komposit termoplastik

 

ABSTRACT

This study was conducted to study the effect of adding graphene nanoplatelets (GNP) nanofiller on the mechanical and thermal properties of polylactic acid (PLA)/liquid natural rubber (LNR)/polyaniline (PANI) nanocomposite. The PLA/LNR/PANI nanocomposites filled with GNP was prepared via melt blending method using an internal mixer. The contents of the GNP fillers were varied from 0.2 to 1.0 wt. %. Specimen was characterized through a series of test such as mechanical test, thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), and thermal conductivity analyzer (TCA) showed positive properties improvement with the addition of GNP at low content in the polymer matrix. The results of tensile, impact, and thermal stability properties indicated the optimum content was achieved at 0.4 wt. %.  Based on the flexural and the TCA tests, the optimum improvement was obtained at 0.6 and 0.8 wt. % of GNP, respectively.

 

Keywords: Graphene nanoplatelets; thermoplastic composite; thermal conductivity; thermal stability

 

REFERENCES

 

Abdul Rahman, N., Easteal, A.J. & Travas-Sejdic, J. 2012. Electrospun nanofibres of PLA/PANI and PLA/P (ANI-co-m-ABA): Thermal studies. Materials Science Forum 700: 137-140.

Ahmad, S.H., Yahya, S.Y. & Rasid, R. 2011. Reinforced thermoplastic natural rubber (TPNR) composites with different types of carbon nanotubes (MWNTS). Carbon Nanotubes-Synthesis, Characterization, Applications. London: IntechOpen.

Arrieta, M.P., Castro-López, M.d.M., Rayón, E., Barral- Losada, L.F., López-Vilariño, J.M., López, J. & González- Rodríguez, M.V. 2014. Plasticized Poly(lactic acid)– Poly(hydroxybutyrate) (PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. Journal of Agricultural and Food Chemistry 62(41): 10170- 10180.

Bhadra, S., Khastgir, D., Singha, N.K. & Lee, J.H. 2009. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 34(8): 783-810.

Bi, T. & Qiu, Z. 2020. Synthesis, thermal and mechanical properties of fully biobased poly(butylene-co-propylene 2,5-furandicarboxylate) copolyesters with low contents of propylene 2,5-furandicarboxylate units. Polymer 186: 122053.

Chen, R.S. & Ahmad, S. 2017. Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Materials Chemistry and Physics 198: 57-65.

Chen, R.S., Ab Ghani, M.H., Ahmad, S., Salleh, M.N. & Mou’ad, A.T. 2015. Rice husk flour biocomposites based on recycled high-density polyethylene/polyethylene terephthalate blend: Effect of high filler loading on physical, mechanical and thermal properties. Journal of Composite Materials 49(10): 1241-1253.

Galpaya, D., Wang, M., Liu, M., Motta, N., Waclawik, E.R. & Yan, C. 2012. Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1(2): 30-49.

Gaska, K., Kádár, R., Rybak, A., Siwek, A. & Gubanski, S. 2017. Gas barrier, thermal, mechanical and rheological properties of highly aligned graphene-ldpe nanocomposites. Polymers 9(7): 294.

Han, Z. & Fina, A. 2011. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science 36(7): 914-944.

Hu, K., Kulkarni, D.D., Choi, I. & Tsukruk, V.V. 2014. Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science 39(11): 1934-1972.

Huxtable, S.T., Cahill, D.G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M.S., Siddons, G., Shim, M. & Keblinski, P. 2003. Interfacial heat flow in carbon nanotube suspensions. Nature Materials 2: 731-734.

Jiang, X. & Drzal, L.T. 2010. Multifunctional high density polyethylene nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: Morphology and mechanical properties. Polymer Composites 31(6): 1091-1098.

Kadiman, N., Romli, J., Muhamad, N., Bakar, A. & Foudzi, F. 2018. Pengoptimuman parameter sonikasi dan pengacauan magnetik bagi mendapatkan penyerakan sebati komposit kuprum-grafin berdasarkan sifat morfologi. Sains Malaysiana 47(5): 1039-1043.

Kim, H.S., Bae, H.S., Yu, J. & Kim, S.Y. 2016. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Scientific Reports 6: 26825.

Kim, H., Abdala, A.A. & Macosko, C.W. 2010. Graphene/polymer nanocomposites. Macromolecules 43(16): 6515-6530.

King, J.A., Via, M.D., Morrison, F.A., Wiese, K.R., Beach, E.A., Cieslinski, M.J. & Bogucki, G.R. 2012. Characterization of exfoliated graphite nanoplatelets/polycarbonate composites: Electrical and thermal conductivity, and tensile, flexural, and rheological properties. Journal of Composite Materials 46(9): 1029-1039.

Margolin, A.L. 2018. Effects of graphene on thermal oxidation of isotactic polypropylene. Polymer Degradation and Stability 156: 59-65.

Milani, M.A., González, D., Quijada, R., Basso, N.R.S., Cerrada, M.L., Azambuja, D.S. & Galland, G.B. 2013. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: Synthesis, characterization and fundamental properties. Composites Science and Technology 84: 1-7.

Miltner, H.E., Assche, G.V., Pozsgay, A., Pukánszky, B. & Mele, B.V. 2006. Restricted chain segment mobility in poly(amide) 6/clay nanocomposites evidenced by quasi-isothermal crystallization. Polymer 47(3): 826-835.

Murariu, M., Bonnaud, L., Yoann, P., Fontaine, G., Bourbigot, S. & Dubois, P. 2010. New trends in polylactide (PLA)-based materials: “green” PLA - Calcium sulfate (nano)composites tailored with flame retardant properties. Polymer Degradation and Stability 95(3): 374-381.

Papageorgiou, D.G., Kinloch, I.A. & Young, R.J. 2015. Graphene/elastomer nanocomposites. Carbon 95: 460-484.

Paul, M.A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A. & Dubois, P. 2003. New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: Thermal and morphological study. Polymer 44(2): 443-450.

Peng, S., Zhu, P., Wu, Y., Mhaisalkar, S.G. & Ramakrishna, S. 2012. Electrospun conductive polyaniline-polylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells. RSC Advances 2(2): 652-657.

Pinto, A.M., Cabral, J., Tanaka, D.A.P., Mendes, A.M. & Magalhães, F.D. 2013a. Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polymer International 62(1): 33-40.

Pinto, A.M., Moreira, S., Goncalves, I.C., Gama, F.M., Mendes, A.M. & Magalhaes, F.D. 2013b. Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf B Biointerfaces 104: 229-238.

Rosli, N.A., Ahmad, I., Anuar, F.H. & Abdullah, I. 2016. Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber. Polymer Testing 54: 196-202.

Saharudin, M., Atif, R. & Inam, F. 2017. Effect of short-term water exposure on the mechanical properties of halloysite nanotube-multi layer graphene reinforced polyester nanocomposites. Polymers 9(1): 27.

Shahdan, D., Ahmad, S.H. & Flaifel, M.H. 2013. Effect of ultrasonic treatment on tensile properties of PLA/LNR/NiZn ferrite nanocomposite. AIP Conference Proceedings 1571(1): 75-82.

Shah, A.M., Kadir, M.R.A. & Razak, S.I.A. 2017. Novel PLA-based conductive polymer composites for biomedical applications. JOM 69(12): 2838-2843.

Simmons, H., Tiwary, P., Colwell, J. & Kontopoulou, M. 2019. Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polymer Degradation and Stability 166: 248-257.

Soundararajah, Q.Y., Karunaratne, B.S.B. & Rajapakse, R.M.G. 2009. Montmorillonite polyaniline nanocomposites: Preparation, characterization and investigation of mechanical properties. Materials Chemistry and Physics 113(2-3): 850-855.

Tarawneh, M.A., Ahmad, S.H.J., Zarina, K.A.K., Hassan, I.N., Jiun, Y.L., Flaifel, M.H. & Shamsul Bahri, A.R. 2013. Properties enhancement of TPNR-MWNTs-OMMT hybrid nanocomposites by using ultrasonic treatment. Sains Malaysiana 42(4): 503-507.

Teng, C.C., Ma, C.C.M., Lu, C.H., Yang, S.Y., Lee, S.H., Hsiao, M.C., Yen, M.Y., Chiou, K.C. & Lee, T.M. 2011. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49(15): 5107-5116.

Vadukumpully, S., Paul, J., Mahanta, N. & Valiyaveettil, S. 2011. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1): 198-205.

Wang, Q., Wang, Y., Meng, Q., Wang, T., Guo, W., Wu, G. & You, L. 2017. Preparation of high antistatic HDPE/polyaniline encapsulated graphene nanoplatelet composites by solution blending. RSC Advances 7(5): 2796-2803.

Xie, X.L., Mai, Y.W. & Zhou, X.P. 2005. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science and Engineering: R: Reports 49(4): 89-112.

Yadav, S.K. & Cho, J.W. 2013. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Applied Surface Science 266: 360-367.

 

*Corresponding author; email: chen@ukm.edu.my

   

 

 

previous