Sains Malaysiana 49(9)(2020): 2119-2127
http://dx.doi.org/10.17576/jsm-2020-4909-10
Nitrogen Optimization on Rhamnolipid Biosurfactant Production from Pseudoxanthomonas sp. G3 and Its
Preservation Techniques
(Pengoptimuman
Nitrogen pada Pengeluaran Biosurfaktan Rhamnolipid daripada Pseudoxanthomonas sp. G3 dan Teknik
Pemeliharaannya)
ISTY
ADHITYA PURWASENA, DEA INDRIANI ASTUTI* & SALSABILA
GHINA UTAMI
Department of Microbiology, School of Life Sciences
and Technology, Institut Teknologi Bandung, Jalan Ganesha, No.
10, 40132, Bandung, Indonesia
Received: 16 January 2020/Accepted: 10 May 2020
ABSTRACT
Biosurfactant is a microbial bioproduct that is used to reduce the surface tension, and can acted as emulsifier,
dispersant, and anti-adhesive. Optimization of biosurfactant production needs to be done, not only to increase its production quantity, but
also to reduce overall production cost. This study aims to determine the most
suitable and optimum concentration of nitrogen source for biosurfactant production and its preservation techniques. The biosurfactant was produced by Pseudoxanthomonas sp. G3 using minimal salt medium with 2%
light crude oil as carbon source and different nitrogen sources in the form of
urea, sodium nitrate, and ammonium nitrate. The activity of biosurfactants were measured by emulsification index (E24), interfacial tense (IFT), oil drop
assay, and dry weight. Potassium sorbate 0.2% (w/v) was used as preservative
agent. The results showed that biosurfactant production using sodium nitrate as a nitrogen source provides the highest
activity and yield. The E24 value was 76.63% and the clear zone diameter
observed was 0.875 cm. The overall decreased in IFT was 35.4% and the biosurfactant dry weight was 0.45 gL-1.
Microbial contamination occurred after 3 weeks of storage in the treatment
without the addition of preservative. It also showed that the activity of biosurfactants (emulsification and IFT) were gradually
decreased during storage. In conclusion, the optimum biosurfactant production by Pseudoxanthomonas sp. G3 was obtained by the addition of
sodium nitrate 0.3% (w/v). Meanwhile, the most effective biosurfactant preservation method was by adding potassium sorbate which was stored at 4
℃.
Keywords: Biosurfactant;
nitrogen; pottasium sorbate; preservation; Pseudoxanthomonas sp.
ABSTRAK
Biosurfaktan adalah bioproduk mikrob yang digunakan untuk mengurangkan
ketegangan permukaan dan boleh bertindak sebagai pengemulsi, penyerak dan
anti-pelekat. Pengoptimuman pengeluaran biosurfaktan perlu dilakukan bukan
hanya untuk meningkatkan kuantiti pengeluarannya, tetapi juga untuk
mengurangkan keseluruhan kos pengeluaran. Kajian ini bertujuan untuk menentukan
kepekatan sumber nitrogen yang paling sesuai dan optimum untuk pengeluaran
biosurfaktan dan teknik pemeliharaannya. Biosurfaktan dihasilkan oleh Pseudoxanthomonas sp. G3 menggunakan medium garam minimum dengan 2% minyak mentah ringan sebagai
sumber karbon dan sumber nitrogen berbeza dalam bentuk urea, natrium nitrat,
dan ammonium nitrat. Aktiviti biosurfaktan diukur dengan indeks pengemulsi
(E24), tegangan antara muka (IFT), asai penurunan minyak dan berat kering.
Kalim sorbat 0.2% (w/v) digunakan sebagai agen pengawet. Hasil kajian
menunjukkan bahawa pengeluaran biosurfaktan menggunakan natrium nitrat sebagai
sumber nitrogen memberikan aktiviti dan hasil tertinggi. Nilai E24 adalah
76.63% dan diameter zon jernih yang diperhatikan ialah 0.875 cm. Keseluruhan
penurunan IFT adalah 35.4% dan berat kering biosurfaktan adalah 0.45 gL-1.
Pencemaran mikrob berlaku selepas penyimpanan selama 3 minggu dalam rawatan
tanpa penambahan bahan pengawet. Ini juga menunjukkan bahawa aktiviti
biosurfaktan (pengemulsi dan IFT) secara beransur-ansur berkurang semasa
penyimpanan. Kesimpulannya, pengeluaran biosurfaktan optimum oleh Pseudoxanthomonas sp. G3 diperoleh dengan penambahan natrium
nitrat 0.3% (w/v). Sementara itu, kaedah pengawetan biosurfaktan yang paling
berkesan adalah dengan menambahkan kalium sorbat yang disimpan pada suhu 4 ℃.
.
Kata kunci: Biosurfaktan; kalium
sorbat; nitrogen; pemeliharaan; Pseudoxanthomonas sp.
REFERENCES
Anon. 2015. Biosurfactants market
analysis by product (Rhamnolipids, Sophorolipids, MES, APG, Sorbitan Esters, Sucrose Esters) and segment forecast. Grand View Research (GVR). 2014-2020. https://www.grandviewresearch.com/industry-analysis/biosurfactants-industry.
Astuti, D.I., Purwasena, I.A., Putri, R.E., Amaniyah, M. & Sugai,
Y. 2019. Screening and characterization of biosurfactant produced by Pseudoxanthomonas sp. G3 and its applicability for enhanced oil recovery. Journal of
Petroleum Exploration and Production Technology 9(3): 2279-2289.
Berk, Z. 2013. Physical Properties of Food Materials. Cambridge: Academic Press.
Campos, J.M., Stamford, T.L.M., Sarubbo,
L.A., Luna, J.M., Rufino, R.D. & Banat, I.M. 2013. Microbial biosurfactants as additives for food industries. Biotechnology
Progress 29(5): 1097-1108.
Desai, J.D. & Banat, I.M. 1997.
Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews 61(1):
47-64.
Fontana Jr., A.J. 2007. Appendix D: Minimum water activity limits for growth of microorganisms. In Water Activity in Foods: Fundamentals and Applications,
edited by Barbosa-Canovas,
G.V., Fontana Jr., A.J., Schmidt, S.J. & Labuza,
T.P. Oxford: Blackwell Publishing Ltd.
Freitas, B., Brito, J., Brasileiro, P., Rufino, R., Luna,
J., Santos, V. & Sarubbo, L. 2016. Formulation of
a commercial biosurfactant for application as a
dispersant of petroleum and by-products spilled in oceans. Frontiers in
Microbiology 7:
1646-1654.
Gudina, E.J.,
Pereira, J.F.B., Costa, R., Coutinho, J.A.P.,
Teixeira, J.A. & Rodrigues, L.R. 2013. Biosurfactant-producing
and oil-degrading Bacillus subtilis strains enhanced oil recovery in
laboratory sand-pack columns. Journal of Hazardous Materials 261:
106-113.
Halla, N., Fernandes, I., Heleno, S., Costa, P., Boucherit-Otmani,
Z., Boucherit, K., Rodrigues, A., Ferreira, I. & Barreiro,
M. 2018. Cosmetics preservation: A review on present strategies. Molecules 23(7): 1571-1610.
Madigan, M.T., Martinko,
J.M. & Brock, T.D. 2006. Brock
Biology of Microorganism. New Jersey: Pearson Prentice Hall.
Mulligan, C.N. & Gibbs, B.F. 1989. Correlation of
nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Applied and Environmental Microbiology 55(11): 3016-3019.
Nayak, A., Vijaykumar, M. & Karegoudar, T. 2009. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and
its application in bioremediation. International Biodeterioration & Biodegradation 63(1): 73-79.
Nedwell, D.B.
1999. Effect of low temperature on microbial growth: Lowered affinity for
substrates limits growth at low temperature. FEMS Microbiology Ecology 30(2):
101-111.
Pacwa-Płociniczak, M., Płaza, G.A., Piotrowska-Seget,
Z. & Cameotra, S.S. 2011. Environmental
applications of biosurfactants: Recent advances. International
Journal of Molecular Sciences 12(1): 633-654.
Peleg, M., Corradini, M.G. & Normand, M.D. 2015. On modeling the
effect of water activity on microbial growth and mortality kinetics. In Water Stress in Biological, Chemical,
Pharmaceutical and Food Systems. Food Engineering Series, edited by
Gutiérrez-López, G., Alamilla-Beltrán,
L., del PilarBuera, M., Welti-Chanes,
J., Parada-Arias, E. & Barbosa-Cánovas, G. New York: Springer.
Purwasena, I.A., Astuti, D.I., Syukron, M., Amaniyah, M. & Sugai,
Y. 2019. Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. Journal of
Petroleum Science and Engineering 183(2019): 106383-106391.
Rashedi, H., Assadi, M.M., Jamshidi, E. & Bonakdarpour, B. 2006. Optimization of the production of biosurfactant by Pseudomonas
aeruginosa HR isolated from an Iranian Southern oil well. Iranian Journal of Chemistry and Chemical
Engineering 25(1): 25-30.
Rawat, S.
2015. Food Spoilage: Microorganism and their prevention. Asian Journal of
Plant Science and Research 5(4): 47-56.
Roy, A. 2017. Review on the biosurfactants:
Properties, types and its applications. Journal of Fundamentals of Renewable Energy Applications 8(1): 248-261.
Santos, D., Rufino,
R., Luna, J., Santos, V. & Sarubbo, L. 2016. Biosurfactants: Multifunctional biomolecules of the 21st
century. International Journal of Molecular Sciences 17(3): 401-431.
Sheng, J. 2011. Modern
Chemical Enhanced Oil Recovery. Texas: Gulf Professional Publishing.
Singh, P. & Tiwary, B. 2016. Isolation and characterization of
glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresources and Bioprocessing 3(1): 42-57.
Singh, P., Patil, Y. & Rale,
V. 2019. Biosurfactant production: Emerging trends
and promising strategies. Journal of Applied Microbiology 126(1): 2-13.
Smyth, T.J.P., Perfumo, A., McClean, S., Marchant, R. & Banat, I.M. 2010. Chapter
27. Isolation and analysis of lipopeptides and high
molecular weight biosurfactants. In Handbook of Hydrocarbon and Lipid
Microbiology, edited by Timmis, K.N.
Berlin: Springer.
Sofos, J.N. & Busta, F.F. 1981. Antimicrobial activity of sorbate. Journal
of Food Protection 44(8): 614-622.
Sofos, J.N., Pierson, M.D., Blocher,
J.C. & Busta, F.F. 1986. Mode of action of sorbic acid on bacterial cells and spores. International
Journal of Food Microbiology 3(1): 1-17.
Touratier, F.,
Legendre, L. & Vezina, A.
1999. Model of bacteria growth influenced by substrate C: N ratio and concentration. Aquatic Microbial Ecology 19(2): 105-118.
Walter, V., Syldatk, C. & Hausmann, R.
2010. Screening concepts for the isolation of biosurfactant producing microorganisms. In Biosurfactants.
Advances in Experimental Medicine and Biology, edited by Sen, R. New York:
Springer.
Wu, J.Y., Yeh,
K.L., Lu, W.B., Lin, C.L. & Chang, J.S. 2008. Rhamnolipid production with indigenous Pseudomonas
aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology 99(5): 1157-1164.
*Corresponding
author; email: dea@sith.itb.ac.id
|