Sains Malaysiana 49(9)(2020): 2119-2127

http://dx.doi.org/10.17576/jsm-2020-4909-10

 

Nitrogen Optimization on Rhamnolipid Biosurfactant Production from Pseudoxanthomonas sp. G3 and Its Preservation Techniques

(Pengoptimuman Nitrogen pada Pengeluaran Biosurfaktan Rhamnolipid daripada Pseudoxanthomonas sp. G3 dan Teknik Pemeliharaannya)

 

ISTY ADHITYA PURWASENA, DEA INDRIANI ASTUTI* & SALSABILA GHINA UTAMI

 

Department of Microbiology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha, No. 10, 40132, Bandung, Indonesia

 

Received: 16 January 2020/Accepted: 10 May 2020

 

ABSTRACT

Biosurfactant is a microbial bioproduct that is used to reduce the surface tension, and can acted as emulsifier, dispersant, and anti-adhesive. Optimization of biosurfactant production needs to be done, not only to increase its production quantity, but also to reduce overall production cost. This study aims to determine the most suitable and optimum concentration of nitrogen source for biosurfactant production and its preservation techniques. The biosurfactant was produced by Pseudoxanthomonas sp. G3 using minimal salt medium with 2% light crude oil as carbon source and different nitrogen sources in the form of urea, sodium nitrate, and ammonium nitrate. The activity of biosurfactants were measured by emulsification index (E24), interfacial tense (IFT), oil drop assay, and dry weight. Potassium sorbate 0.2% (w/v) was used as preservative agent. The results showed that biosurfactant production using sodium nitrate as a nitrogen source provides the highest activity and yield. The E24 value was 76.63% and the clear zone diameter observed was 0.875 cm. The overall decreased in IFT was 35.4% and the biosurfactant dry weight was 0.45 gL-1. Microbial contamination occurred after 3 weeks of storage in the treatment without the addition of preservative. It also showed that the activity of biosurfactants (emulsification and IFT) were gradually decreased during storage. In conclusion, the optimum biosurfactant production by Pseudoxanthomonas sp. G3 was obtained by the addition of sodium nitrate 0.3% (w/v). Meanwhile, the most effective biosurfactant preservation method was by adding potassium sorbate which was stored at 4 ℃.

 

Keywords: Biosurfactant; nitrogen; pottasium sorbate; preservation; Pseudoxanthomonas sp.

 

ABSTRAK

Biosurfaktan adalah bioproduk mikrob yang digunakan untuk mengurangkan ketegangan permukaan dan boleh bertindak sebagai pengemulsi, penyerak dan anti-pelekat. Pengoptimuman pengeluaran biosurfaktan perlu dilakukan bukan hanya untuk meningkatkan kuantiti pengeluarannya, tetapi juga untuk mengurangkan keseluruhan kos pengeluaran. Kajian ini bertujuan untuk menentukan kepekatan sumber nitrogen yang paling sesuai dan optimum untuk pengeluaran biosurfaktan dan teknik pemeliharaannya. Biosurfaktan dihasilkan oleh Pseudoxanthomonas sp. G3 menggunakan medium garam minimum dengan 2% minyak mentah ringan sebagai sumber karbon dan sumber nitrogen berbeza dalam bentuk urea, natrium nitrat, dan ammonium nitrat. Aktiviti biosurfaktan diukur dengan indeks pengemulsi (E24), tegangan antara muka (IFT), asai penurunan minyak dan berat kering. Kalim sorbat 0.2% (w/v) digunakan sebagai agen pengawet. Hasil kajian menunjukkan bahawa pengeluaran biosurfaktan menggunakan natrium nitrat sebagai sumber nitrogen memberikan aktiviti dan hasil tertinggi. Nilai E24 adalah 76.63% dan diameter zon jernih yang diperhatikan ialah 0.875 cm. Keseluruhan penurunan IFT adalah 35.4% dan berat kering biosurfaktan adalah 0.45 gL-1. Pencemaran mikrob berlaku selepas penyimpanan selama 3 minggu dalam rawatan tanpa penambahan bahan pengawet. Ini juga menunjukkan bahawa aktiviti biosurfaktan (pengemulsi dan IFT) secara beransur-ansur berkurang semasa penyimpanan. Kesimpulannya, pengeluaran biosurfaktan optimum oleh Pseudoxanthomonas sp. G3 diperoleh dengan penambahan natrium nitrat 0.3% (w/v). Sementara itu, kaedah pengawetan biosurfaktan yang paling berkesan adalah dengan menambahkan kalium sorbat yang disimpan pada suhu 4 ℃.

.

 

Kata kunci: Biosurfaktan; kalium sorbat; nitrogen; pemeliharaan; Pseudoxanthomonas sp.

 

REFERENCES

Anon. 2015. Biosurfactants market analysis by product (Rhamnolipids, Sophorolipids, MES, APG, Sorbitan Esters, Sucrose Esters) and segment forecast. Grand View Research (GVR).  2014-2020. https://www.grandviewresearch.com/industry-analysis/biosurfactants-industry.

Astuti, D.I., Purwasena, I.A., Putri, R.E., Amaniyah, M. & Sugai, Y. 2019. Screening and characterization of biosurfactant produced by Pseudoxanthomonas sp. G3 and its applicability for enhanced oil recovery. Journal of Petroleum Exploration and Production Technology 9(3): 2279-2289.

Berk, Z. 2013. Physical Properties of Food Materials. Cambridge: Academic Press.

Campos, J.M., Stamford, T.L.M., Sarubbo, L.A., Luna, J.M., Rufino, R.D. & Banat, I.M. 2013. Microbial biosurfactants as additives for food industries. Biotechnology Progress 29(5): 1097-1108.

Desai, J.D. & Banat, I.M. 1997. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews 61(1): 47-64.

Fontana Jr., A.J. 2007. Appendix D: Minimum water activity limits for growth of microorganisms. In Water Activity in Foods: Fundamentals and Applications, edited by Barbosa-Canovas, G.V., Fontana Jr., A.J., Schmidt, S.J. & Labuza, T.P. Oxford: Blackwell Publishing Ltd.

Freitas, B., Brito, J., Brasileiro, P., Rufino, R., Luna, J., Santos, V. & Sarubbo, L. 2016. Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Frontiers in Microbiology 7: 1646-1654.

Gudina, E.J., Pereira, J.F.B., Costa, R., Coutinho, J.A.P., Teixeira, J.A. & Rodrigues, L.R. 2013. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhanced oil recovery in laboratory sand-pack columns. Journal of Hazardous Materials 261: 106-113.

Halla, N., Fernandes, I., Heleno, S., Costa, P., Boucherit-Otmani, Z., Boucherit, K., Rodrigues, A., Ferreira, I. & Barreiro, M. 2018. Cosmetics preservation: A review on present strategies. Molecules 23(7): 1571-1610.

Madigan, M.T., Martinko, J.M. & Brock, T.D. 2006. Brock Biology of Microorganism. New Jersey: Pearson Prentice Hall.

Mulligan, C.N. & Gibbs, B.F. 1989. Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Applied and Environmental Microbiology 55(11): 3016-3019.

Nayak, A., Vijaykumar, M. & Karegoudar, T. 2009. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. International Biodeterioration & Biodegradation 63(1): 73-79.

Nedwell, D.B. 1999. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiology Ecology 30(2): 101-111.

Pacwa-Płociniczak, M., Płaza, G.A., Piotrowska-Seget, Z. & Cameotra, S.S. 2011. Environmental applications of biosurfactants: Recent advances. International Journal of Molecular Sciences 12(1): 633-654.

Peleg, M., Corradini, M.G. & Normand, M.D. 2015. On modeling the effect of water activity on microbial growth and mortality kinetics. In Water Stress in Biological, Chemical, Pharmaceutical and Food Systems. Food Engineering Series, edited by Gutiérrez-López, G., Alamilla-Beltrán, L., del PilarBuera, M., Welti-Chanes, J., Parada-Arias, E. & Barbosa-Cánovas, G. New York: Springer.

Purwasena, I.A., Astuti, D.I., Syukron, M., Amaniyah, M. & Sugai, Y. 2019. Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. Journal of Petroleum Science and Engineering 183(2019): 106383-106391.

Rashedi, H., Assadi, M.M., Jamshidi, E. & Bonakdarpour, B. 2006. Optimization of the production of biosurfactant by Pseudomonas aeruginosa HR isolated from an Iranian Southern oil well. Iranian Journal of Chemistry and Chemical Engineering 25(1): 25-30.

Rawat, S. 2015. Food Spoilage: Microorganism and their prevention. Asian Journal of Plant Science and Research 5(4): 47-56.

Roy, A. 2017. Review on the biosurfactants: Properties, types and its applications. Journal of Fundamentals of Renewable Energy Applications 8(1): 248-261.

Santos, D., Rufino, R., Luna, J., Santos, V. & Sarubbo, L. 2016. Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences 17(3): 401-431.

Sheng, J. 2011. Modern Chemical Enhanced Oil Recovery. Texas: Gulf Professional Publishing.

Singh, P. & Tiwary, B. 2016. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresources and Bioprocessing 3(1): 42-57.

Singh, P., Patil, Y. & Rale, V. 2019. Biosurfactant production: Emerging trends and promising strategies. Journal of Applied Microbiology 126(1): 2-13.

Smyth, T.J.P., Perfumo, A., McClean, S., Marchant, R. & Banat, I.M. 2010. Chapter 27. Isolation and analysis of lipopeptides and high molecular weight biosurfactants. In Handbook of Hydrocarbon and Lipid Microbiology, edited by Timmis, K.N. Berlin: Springer. 

Sofos, J.N. & Busta, F.F. 1981. Antimicrobial activity of sorbate. Journal of Food Protection 44(8): 614-622.

Sofos, J.N., Pierson, M.D., Blocher, J.C. & Busta, F.F. 1986. Mode of action of sorbic acid on bacterial cells and spores. International Journal of Food Microbiology 3(1): 1-17.

Touratier, F., Legendre, L. & Vezina, A. 1999. Model of bacteria growth influenced by substrate C: N ratio and concentration. Aquatic Microbial Ecology 19(2): 105-118.

Walter, V., Syldatk, C. & Hausmann, R. 2010. Screening concepts for the isolation of biosurfactant producing microorganisms. In Biosurfactants. Advances in Experimental Medicine and Biology, edited by Sen, R. New York: Springer.

Wu, J.Y., Yeh, K.L., Lu, W.B., Lin, C.L. & Chang, J.S. 2008. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology 99(5): 1157-1164.

 

*Corresponding author; email: dea@sith.itb.ac.id

   

 

 

previous