Sains Malaysiana 49(9)(2020): 2141-2148

http://dx.doi.org/10.17576/jsm-2020-4909-12

 

Lignin-Coated Polystyrene/Trichloromethylsilane Absorbent for Oil Spill Cleanup

(Penyerap Polistirena/Triklorometilsilana Bersalut Lignin untuk Pembersihan Tumpahan Minyak)

 

NUR AMALINA AZHAR1, NADIA ADRUS1, WAN AIZAN WAN RAHMAN1 & ROHAH A. MAJID2*

 

1School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

2Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

Received: 16 January 2020/Accepted: 10 May 2020

 

ABSTRACT

The study was conducted to determine the effectiveness of lignin-polystyrene/ trichloromethylsilane (TL-PS) absorbent in removing oil spillage from wastewater. Lignin powder obtained from the delignification of oil palm empty fruit bunch (OPEFB) was coated with PS emulsion (PSE) at various concentrations (2, 4, 6, & 8 mL) in order to bind the powder into an aggregated form. Later, L-PS was exposed to trichloromethylsilane (TCMS) via chemical vapour deposition method (CVD) at fixed 7.5 min exposure time to form TL-PS absorbent. The wettability of TL-PS was determined by conducting water contact angle (WCA) measurement and oil sorption capacity. It was found that TL-PS4 sample (immersed in 8 mL PSE) had the highest WCA value (134.10°) and oil sorption capacity (52%) in comparison with L-PS4 (immersed in 8 mL PSE without TCMS) with WCA value of 99.10° and oil sorption capacity of 40%. Meanwhile, the disappearance of hydroxyl group (OH) at peak 3429 cm-1 and appearance of siloxane bonds (R-Si-O) at peak in range of 1000 - 1100 cm-1 and 3.9 - 4.0 ppm had confirmed the substitution occurred between these groups, as shown by the spectra obtained from attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR). Thermal stability of TL-PS4 (onset degradation temperature at 252 °C) was higher when compared with lignin (onset degradation temperature at 40 °C), as showed by the thermogravimetric analysis (TGA). Meanwhile, the surface of absorbent had change from smooth (L-PS4) to rough (TL-PS4) corresponding to the deposition of silane particles onto the surface of L-PS after the exposure with TCMS, as shown by the scanning electron microscopy (SEM). The results suggested that TL-PS has a promising potential to be used as an absorbent for oil spill cleanup.

 

Keywords: Chemical vapour deposition; lignin; oil spillage; polystyrene; trichloromethylsilane

 

ABSTRAK

Kajian ini telah dijalankan untuk menentukan keberkesanan serapan lignin-polistirena/triklorometilsilana (TL-PS) dalam mengasingkan tumpahan minyak daripada sisa air buangan. Serbuk lignin yang diperoleh daripada proses nyahlignin tandan kosong kelapa sawit (OPEFB) telah disalut dengan emulsi PS (PSE) pada kepekatan yang berlainan (2, 4, 6 & 8 mL) untuk mengikat serbuk ke dalam bentuk bergumpal. Kemudian, L-PS didedahkan kepada triklorometilsilana (TCMS) melalui kaedah pemendapan wap kimia (CVD) pada masa yang ditetapkan iaitu 7.5 minit waktu pendedahan bagi menghasilkan penyerap TL-PS. Tahap pembasahan TL-PS telah ditentukan dengan menggunakan pengukuran sudut permukaan air (WCA) dan peratusan kapasiti penyerapan minyak. Bahan sampel TL-PS4 (yang direndam di dalam 8 mL PSE) menunjukkan nilai WCA yang tertinggi (134.10º) dan peratusan kapasiti minyak penyerapan meningkat kepada kira-kira 52% berbanding dengan L-PS4 (direndam dalam 8 mL PSE tanpa TCMS) dengan nilai WCA bersamaan 99.10° dan kapasiti penyerapan minyak pada 40%. Sementara itu, penyingkiran kumpulan hidrosil (OH) pada puncak 3429 cm-1 dan kehadiran ikatan siloksana (R-Si-O) pada puncak dalam lingkungan 1000 - 1100 cm-1 dan 3.9 - 4.0 ppm mengesahkan penggantian telah berlaku antara kumpulan ini, seperti yang ditunjukkan oleh spektra analisis spektroskopi inframerah (ATR-FTIR) dan resonans magnetik nuklear (NMR). Kestabilan TL-PS terhadap suhu (suhu permulaan degradasi pada 252.41 °C) adalah lebih tinggi apabila dibandingkan dengan lignin (suhu permulaan degradasi pada 40 °C), seperti yang ditunjukkan oleh analisis haba gravimetrik (TGA). Sementara itu, permukaan penyerap telah bertukar dari permukaan yang licin (L-PS4) kepada permukaan yang kasar (TL-PS) sepadan dengan pemendapan zarah silina ke permukaan L-PS selepas terdedah kepada TCMS, seperti yang ditunjukkan oleh mikroskop pengimbasan elektron (SEM). Keputusan ini mencadangkan bahawa TL-PS berpotensi untuk digunakan sebagai penyerap bagi pembersihan tumpahan minyak.

 

Kata kunci: Lignin; polisterina; teknik pemendapan wap kimia; triklorometilsilina; tumpahan minyak

 

REFERENCES

Anju, V.P. & Narayanankutty, S.K. 2017. Impact of Bis-(3-triethylsilylpropyl)tetrasulphide in the properties of PMMA/cellulose composite. Polymer 119: 224-237.

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizaleh, Z., Ishak, M.R. & Hoque, M.E. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 2015(6): 1-16.

Azhar, N.A., Rahman, W.A.W. & Majid, R.A. 2019. Lignin-treated-trichloromethylsilane sorbent for oil spill cleanup. Journal of Energy and Safety Technology 1(2): 43-49.

Babiker, D.M.D., Zhu, L., Yagoub, H., Xu, X., Zhang, X., Shibraen, M.H.M.A. & Yang, S. 2019. Hydrogen-bonded methylcellulose/poly(acrylic acid) complex membrane for oil-water separation. Surface & Coatings Technology 367: 49-57.

Bogdan, A. & Kulmala, M. 2006. Encyclopedia of Surface and Colloid Science. 2nd edition. New York: Taylor & Francis.

Capelletto, E., Callone, E., Campostrini, R., Girardi, F., Maggini, S., Volpe, C.D., Siboni, S. & Maggio, R.D. 2012. Hydrophobic siloxane paper coatings: The effect of increasing methyl substitution. Journal Sol-gel Science Technology. 62: 441-452.

Cunha, A.G., Freire, C., Sivestre, A., Neto, C.P., Gandini, A., Belgacem, M.N., Chaussy, D. & Beneventi, D. 2010. Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas-solid reaction. Journal Colloid and Interface Science 344(2): 588-595.

Doshi, B., Sillanpää, M. & Kalliola, S. 2018. A review of bio-based materials for oil spill treatment. Water Research 135: 262-277.

Ghavidel, F. & Fatehi, P. 2019. Synergistic effect of lignin incorporation into polystyrene for producing sustainable superadsorbent. RSC Advances 9: 17639-17652.

Gupta, R., Gupta, N. & Rathi, P. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Application Microbiology Biotechnology 64(6): 763-781.

Kai, D., Low, Z., Liow, S.S., Karim, A.A., Ye, H., Jin, G., Li, K. & Loh, X.J. 2015. Development of lignin supramolecular hydrogels with mechanically responsive and self-healing properties. ACS Sustainable Chemistry Engineering 3(9): 2160-2169.

Li, H., Zhang, Q., Gao, P. & Wang, L. 2015. Preparation and characterization of graft copolymer from dealkaline lignin and styrene. Journal of Applied Polymer Science 132(17): 1-9.

Li, S.H., Zhang, S.B. & Wang, X.H. 2008. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24(10): 5585-5590.

Liu, F., Ma, M., Zang, D., Gao, Z. & Wang, C. 2014. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil seperation. Carbohydrates Polymers 103: 480-487.

Liu, Y., Liu, N., Jing, Y., Jiang, Y., Yu, L. & Yan, X. 2019. Surface design of durable and recyclable superhydrophobic materials for oil/water separation. Colloids and Surfaces A 567: 128-138.

Michel, J. & Fingas, M. 2016. Oil spills: Causes, consequences, prevention and counter measure. In Fossil Fuels, edited Crawley, G.M. Singapore: World Scientific Publishing Company. pp. 159-201.

Oribayo, O., Feng, X., Rempel, G.L. & Pan, Q. 2017. Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chemical Engineering Journal 323: 191-202.

Pour, F.Z., Karimi, H. & Avargani, V.M. 2019. Preparation of a superhydrophobic and superoleophilic polyester textile by chemical vapor deposition of dichloromethylsilane for water-oil separation. Polyhedron 159: 54-63.

Salon, M.B., Abdelmouleh, M., Boufi, S., Belgacem, M.N. & Gandini, A. 2005. Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions. Journal of Colloid and Interface Science 289(1): 249-261.

Tejado, A., Chen, W.C., Abim, M.N. & van de Ven, T.G.M. 2014. Superhydrophobic foam-likecellulose made of hydrophobized cellulose fibres. Cellulose 21: 1735-1743.

Vince, J., Vilcknik, B.A., Fir, M., Vuk, A.S., Jovanovski, V. & Simoncic, B. 2006. Structural and water-repellent properties of a urea/poly(dimethylsiloxane) sol-gel hybrid and its bonding to cotton fabric. Langmuir 22(15): 6489-6497.

Wang, J., Zheng, Y. & Wang, A. 2013. Coated kapok fiber for removal of spilled oil. Marine Bulletin 69(1-2): 91-96.

Wang, J., Zheng, Y. & Wang, A. 2012. Superhydropobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chemical Engineering Journal 213: 1-7.

Yang, J., Li, H., Lan, T., Peng, L., Cui, R. & Yang, H. 2017. Preparation, characterization, and properties of fluorine-free superhydrophobic paper based on layer-by-layer assembly. Carbohydrate Polymers 178: 228-237.

Yi, Y., Yang, Z. & Zhang, S. 2011. Ecological risk assessment of heavy metals in sodiment and human health risk assessment of heavy metals in fishes in the middle and lower reacher of the Yangtze River basin. Environmental Pollution 159(10): 2575-2585.

Yuan, J., Gao, R., Wang, Y., Cao, W., Dong, B. & Dou, J. 2018. A novel hydrophobic adsorbent of electrospun SiO2@MUF/PAN nanofibrous membrane and its adsorption behaviour for oil and organic solvents. Journal Material Science 53: 16357-16370.

Zhang, T., Li, Z., Lü, Y., Liu, Y., Yang, D., Li, Q. & Qiu, F. 2018. Recent progress and future prospects of oil-absorbing materials. Chinese Journal of Chemical Engineering 27(6): 1282-1295.

Zhang, Z., Zhang, Y., Lin, Z., Mulyadi, A., Mu, W. & Deng, Y. 2017. Butryric anhydride modified lignin and its oil-water interfacial properties. Chemical Engineering Science 165: 55-64.

 

*Corresponding author; email: r-rohah@utm.my

 

 

 

 

previous