Sains Malaysiana
49(9)(2020): 2169-2185
http://dx.doi.org/10.17576/jsm-2020-4909-15
Non-
Isothermal Crystallization Kinetics of Poly(Lactic Acid)/Kenaf
Fiber Composites
(Kinetik Penghabluran bukan Isoterma Komposit Poli(Laktik Asid)/Serat Kenaf)
ADIBAH BORHAN & RAZAINA MAT
TAIB*
School of Materials and Mineral Resources Engineering,
Engineering Campus,
Universiti Sains Malaysia, 14300 Nibong Tebal,
Pulau Pinang, Malaysia
Received: 15 October 2019/Accepted:
8 May 2020
Abstract
The non-isothermal crystallization
behavior of poly(lactic acid) (PLA)/kenaf fiber (KF) composites was
investigated using differential scanning calorimetry (DSC) at different cooling
rates (1, 2.5, 5, and 7.5 °C/min) with various KF sizes from
25 to 300 µm. The modified Avrami, Ozawa, and Mo methods were applied to study
the non-isothermal crystallization kinetics of neat PLA and PLA/KF composites.
It was found that KF size of 80-106 µm acts as nucleating agent during
non-isothermal crystallization of PLA/KF composites since the values of
half-time of crystallization (t1/2) of PLA80 were the fastest as
compared to neat PLA and other PLA/KF composites at a given cooling rate. The
Avrami-Jeziorny crystallization rate constant (Zc) increased upon
increased of cooling rates for both neat PLA and PLA/KF composites indicating
the improvement in crystallization. However, only the Zc values for PLA80
were faster than PLA/KF composites but slower than neat PLA at a certain
cooling rate. The
Ozawa method did not apply satisfactorily for both neat PLA and PLA/KF
composites. Meanwhile, the results showed that the Mo method can be
successfully applied by providing a good fitting for all cooling rates of neat
PLA and PLA/KF composites. The Kissinger activation energy (ΔE) of PLA80
recorded the lowest value indicating the size of KF between 80-106 µm accelerated the non-crystallization of PLA.
Keywords: Differential scanning
calorimetry; kenaf fiber; non-isothermal crystallization; poly(lactic acid)
Abstrak
Tingkah laku
penghabluran bukan isoterma komposit poli(laktik asid) (PLA)/serat kenaf (KF)
dikaji dengan menggunakan kalorimetri
pengimbasan perbezaan (DSC) pada
kadar pendinginan yang berbeza (1, 2.5, 5 dan 7.5 °C/min) dalam pelbagai saiz KF daripada 25 hingga 300 μm. Kaedah Avrami diubah suai, Ozawa,
dan Mo digunakan untuk mengkaji kinetik penghabluran bukan isoterma PLA tulen
dan komposit PLA/KF. Telah didapati bahawa saiz KF 80-106 μm
bertindak sebagai agen nukleasi semasa penghabluran bukan isoterma komposit
PLA/KF kerana nilai-nilai separuh masa penghabluran (t1/2) PLA80
adalah terpantas berbanding dengan PLA tulen dan PLA/KF komposit mengikut kadar
pendinginan yang diberikan. Kadar tetap penghabluran Avrami-Jeziorny (Zc) meningkat
apabila peningkatan kadar pendinginan untuk kedua-dua PLA tulen dan komposit
PLA/KF menunjukkan peningkatan dalam penghabluran. Walau bagaimanapun, nilai Zc untuk PLA80
lebih cepat daripada komposit PLA/KF tetapi lebih perlahan daripada PLA tulen
pada kadar pendinginan tertentu. Kaedah Ozawa tidak menunjukkan penerapan yang baik untuk PLA tulen dan komposit PLA/KF.
Sementara itu, keputusan menunjukkan bahawa kaedah Mo dapat diterapkan dengan
berkesan dengan menunjukkan garisan yang kemas bagi semua kadar pendingin PLA
tulen dan komposit PLA/KF. Pengaktifan Kissinger (ΔE) PLA80 mencatatkan
nilai terendah yang menunjukkan saiz KF antara 80-106 µm mempercepatkan
penghabluran semula PLA.
Kata kunci: Kalorimetri pengimbasan
perbezaan; penghabluran bukan isoterma; poli(laktik asid); serat kenaf
REFERENCES
Akhtar,
M.N., Sulong, A.B., Radzi, M.F., Ismail, N.F., Raza, M.R., Muhamad, N. &
Khan, M.A. 2016. Influence of alkaline treatment and fiber loading on the
physical and mechanical properties of kenaf/polypropylene composites for
variety of applications. Progress in Natural Science: Materials
International 26(6): 657-664.
Avérous,
L. 2008. Polylactic acid: Synthesis,
properties and applications. In Monomers, Polymers and Composites from
Renewable Resources. New York: Elsevier. pp. 433-450.
Bai,
Z.F. & Dou, Q. 2016. Non-isothermal crystallization kinetics of
polypropylene/poly (lactic acid)/maleic anhydride-grafted polypropylene blends. Journal of Thermal Analysis and Calorimetry 126(2): 785-794.
Bin, T., Qu, J.P., Liu, L.M., Feng, Y.H., Hu, S.X.
& Yin, X.C. 2011. Non-isothermal crystallization kinetics and dynamic
mechanical thermal properties of poly (butylene succinate) composites
reinforced with cotton stalk bast fibers. Thermochimica Acta 525(1-2):
141-149.
Bouzouita,
A., Samuel, C., Notta‐Cuvier, D., Odent, J., Lauro, F., Dubois, P. &
Raquez, J.M. 2016. Design of highly tough poly (l‐lactide)‐based
ternary blends for automotive applications. Journal of Applied Polymer
Science 133(19): 43402.
Chen,
P.Y., Lian, H.Y., Shih, Y.F., Chen-Wei, S.M. & Jeng, R.J. 2017.
Preparation, characterization and crystallization kinetics of kenaf
fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Materials
Chemistry and Physics 196: 249-255.
Chung,
T.J., Park, J.W., Lee, H.J., Kwon, H.J., Kim, H.J., Lee, Y.K. & Tai, Y.T.W. 2018. The improvement
of mechanical properties, thermal stability, and water absorption resistance of
an eco-friendly PLA/kenaf biocomposite using acetylation. Applied Sciences 8(3): 376.
Coburn,
N., Douglas, P., Kaya, D., Gupta, J. & McNally, T. 2018. Isothermal and
non-isothermal crystallization kinetics of composites of poly (propylene) and
MWCNTs. Advanced Industrial and Engineering Polymer Research 1(1):
99-110.
Elsawy,
M.A., Kim, K.H., Park, J.W. & Deep, A. 2017. Hydrolytic degradation of
polylactic acid (PLA) and its composites. Renewable and Sustainable Energy
Reviews 79: 1346-1352.
El-Shekeil,
Y.A., Salit, M.S., Abdan, K. & Zainudin, E.S. 2011. Development of a new kenaf
bast fiber-reinforced thermoplastic polyurethane composite. BioResources 6(4): 4662-4672.
Gorrasi,
G. & Pantani, R. 2013. Effect of PLA grades and morphologies on hydrolytic
degradation at composting temperature: Assessment of structural
modification and kinetic parameters. Polymer Degradation and Stability 98(5): 1006-1014.
Ho,
M.P., Lau, K.T., Wang, H. & Hui, D. 2015. Improvement on the properties of
polylactic acid (PLA) using bamboo charcoal particles. Composites Part B:
Engineering 81: 14-25.
Jain,
S., Misra, M., Mohanty, A.K. & Ghosh, A.K. 2012. Thermal, mechanical and
rheological behavior of poly (lactic acid)/talc composites. Journal of
Polymers and the Environment 20(4): 1027-1037.
Jalali,
A., Huneault, M.A. & Elkoun, S. 2017. Effect of molecular weight on the
nucleation efficiency of poly (lactic acid) crystalline phases. Journal of
Polymer Research 24(11): 182.
Jin,
X., Chen, X., Cheng, Q., Zhang, N., Cai, S. & Ren, J. 2017. Non-isothermal
crystallization kinetics of ramie fiber-reinforced polylactic acid
biocomposite. RSC Advances 7(73): 46014-46021.
Jonoobi,
M., Harun, J., Mathew, A.P. & Oksman, K. 2010. Mechanical properties of
cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin
screw extrusion. Composites Science and Technology 70(12): 1742-1747.
Kim,
H.S., Park, B.H., Choi, J.H. & Yoon, J.S. 2008. Mechanical properties and
thermal stability of poly (L‐lactide)/calcium carbonate composites. Journal
of Applied Polymer Science 109(5): 3087-3092.
Kowalczyk,
M., Piorkowska, E., Kulpinski, P. & Pracella, M. 2011. Mechanical and
thermal properties of PLA composites with cellulose nanofibers and standard
size fibers. Composites Part A: Applied Science and Manufacturing 42(10): 1509-1514.
Layachi,
A., Frihi, D., Satha, H., Seguela, R. & Gherib, S. 2016. Non-isothermal
crystallization kinetics of polyamide 66/glass fibers/carbon black composites. Journal
of Thermal Analysis and Calorimetry 124(3): 1319-1329.
Lee,
S.H. & Wang, S. 2006. Biodegradable polymers/bamboo fiber biocomposite with
bio-based coupling agent. Composites Part A: Applied Science and
Manufacturing 37(1): 80-91.
Li,
J., Li, J., Feng, D., Zhao, J., Sun, J. & Li, D. 2017. Excellent
rheological performance and impact toughness of cellulose
nanofibers/PLA/ionomer composite. RSC Advances 7(46): 28889-28897.
Lin,
W.Y., Shih, Y.F., Lin, C.H., Lee, C.C. & Yu, Y.H. 2013. The preparation of
multi-walled carbon nanotube/poly (lactic acid) composites with excellent
conductivity. Journal of the Taiwan Institute of Chemical Engineers 44(3):
489-496.
Masirek,
R., Kulinski, Z., Chionna, D., Piorkowska, E. & Pracella, M. 2007.
Composites of poly (L‐lactide) with hemp fibers: Morphology and thermal
and mechanical properties. Journal of Applied Polymer Science 105(1):
255-268.
Meng,
Z., Yang, L., Geng, W., Yao, Y., Wang, X. & Liu, Y. 2014. Kinetic study on
the isothermal and nonisothermal crystallization of monoglyceride organogels. The
Scientific World Journal 2014:
Article ID. 149753.
Myoung,
S.H., Im, S.S. & Kim, S.H. 2016. Non‐isothermal crystallization
behavior of PLA/acetylated cellulose nanocrystal/silica nanocomposites. Polymer
International 65(1): 115-124.
Notta-Cuvier,
D., Odent, J., Delille, R., Murariu, M., Lauro, F., Raquez, J.M., Bennani, B.
& Dubois, P. 2014. Tailoring polylactide (PLA) properties for automotive
applications: Effect of addition of designed additives on main mechanical
properties. Polymer Testing 36: 1-9.
Pan,
P., Zhu, B., Kai, W., Dong, T. & Inoue, Y. 2008. Effect of crystallization
temperature on crystal modifications and crystallization kinetics of poly
(L‐lactide). Journal of Applied Polymer Science 107(1): 54-62.
Pan,
P., Zhu, B., Kai, W., Serizawa, S., Iji, M. & Inoue, Y. 2007.
Crystallization behavior and mechanical properties of bio‐based green
composites based on poly (L‐lactide) and kenaf fiber. Journal of
Applied Polymer Science 105(3): 1511-1520.
Petinakis,
E., Yu, L., Edward, G., Dean, K., Liu, H. & Scully, A.D. 2009. Effect of
matrix-particle interfacial adhesion on the mechanical properties of poly
(lactic acid)/wood-flour micro-composites. Journal of Polymers and the
Environment 17(2): 83-94.
Ren,
Z., Dong, L. & Yang, Y. 2006. Dynamic mechanical and thermal properties of
plasticized poly (lactic acid). Journal of Applied Polymer Science 101(3): 1583-1590.
Rinawa,
K., Maiti, S.N., Sonnier, R. & Cuesta, J.L. 2015. Non-isothermal
crystallization kinetics and thermal behaviour of PA12/SEBS-g-MA blends. Bulletin
of Materials Science 38(5): 1315-1327.
Saeidlou,
S., Huneault, M.A., Li, H., Sammut, P. & Park, C.B. 2012. Evidence of a
dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer 53(25): 5816-5824.
Silverajah,
V.S., Ibrahim, N.A., Yunus, W.M.Z.W., Hassan, H.A. & Woei, C.B. 2012. A
comparative study on the mechanical, thermal and morphological characterization
of poly (lactic acid)/epoxidized palm oil blend. International Journal of
Molecular Sciences 13(5): 5878-5898.
Suryanegara,
L., Nakagaito, A.N. & Yano, H. 2009. The effect of crystallization of PLA
on the thermal and mechanical properties of microfibrillated
cellulose-reinforced PLA composites. Composites Science and Technology 69(7-8): 1187-1192.
Volpe,
V., De Filitto, M., Klofacova, V., De Santis, F. & Pantani, R. 2018. Effect
of mold opening on the properties of PLA samples obtained by foam injection
molding. Polymer Engineering & Science 58(4): 475-484.
Xiao,
H., Yang, L., Ren, X., Jiang, T. & Yeh, J.T. 2010. Kinetics and crystal
structure of poly (lactic acid) crystallized nonisothermally: Effect of
plasticizer and nucleating agent. Polymer Composites 31(12): 2057-2068.
Yu,
T., Hu, C., Chen, X. & Li, Y. 2015. Effect of diisocyanates as
compatibilizer on the properties of ramie/poly (lactic acid)(PLA) composites. Composites
Part A: Applied Science and Manufacturing 76: 20-27.
Yusoff,
R.B., Takagi, H. & Nakagaito, A.N. 2016. Tensile and flexural properties of
polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and
coir fibers. Industrial Crops and Products 94: 562-573.
Zaldua,
N., Mugica, A., Zubitur, M., Iturrospe, A., Arbe, A., Re, G.L., Raquez, J.M.,
Dubois, P. & Müller, A.J. 2016. The role of PLLA-g-montmorillonite
nanohybrids in the acceleration of the crystallization rate of a commercial
PLA. CrystEngComm 18(48): 9334-9344.
Zamri,
M.H., Md Akil, H., Mohd Ishak, Z.A. & Abu Bakar, A. 2015. Effect of
different fiber loadings and sizes on pultruded kenaf fiber reinforced
unsaturated polyester composites. Polymer Composites 36(7): 1224-1229.
*Corresponding author; email: razaina@usm.my
|