Sains Malaysiana 49(9)(2020): 2261- 2267

http://dx.doi.org/10.17576/jsm-2020-4909-23

 

Rice Husk Activated Carbon with NaOH Activation: Physical and Chemical Properties

(Karbon Teraktif Sekam Padi Diaktivasi dengan NaOH: Sifat Fizikal dan Kimia)

 

MOHAMAD JANI SAAD1,4*, CHIA CHIN HUA1, SUFFIAN MISRAN3, SARANI ZAKARIA1, MOHD SAIFUL SAJAB2 & MOHAMMAD HARIZ ABDUL RAHMAN4

 

1Bioresources and Biorefinery Laboratory, Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Forest Research Institute of Malaysia (FRIM), 52100 Kepong, Kuala Lumpur, Federal Territory, Malaysia

 

4Malaysian Agriculture Research and Development Institute (MARDI), 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 15 October 2019/Accepted: 8 May 2020

 

ABSTRACT

Activated carbon was produced from rice husk by activating with NaOH. Three types of samples were made at 850, 750, and 650 °C activation temperature. The properties of the samples were determined. The activated carbons have surface area of 429.82 m2/g from 850 °C activation, 121.39 m2/g (750 °C) and 93.89 m2/g (650 °C). The results were higher than rice husk carbon without activation (0.23 m2/g). The activated carbons have mesopore size (2-50 nm). Proximate and ultimate analyses of the samples were also determined. The activation process increased the carbon content of the samples. Physical characteristics of the activated carbons were shown from the XRD analysis. FTIR demonstrated the different functional of the rice husk carbon and activated. The SEM images showed the pores on the surface of the activated carbon due to the NaOH activation.

 

Keywords: Activated carbon; chemical properties; NaOH activation; physical properties; rice husk

 

ABSTRAK

Karbon teraktif (AC) daripada sekam padi telah dihasilkan dengan mengaktifkan NaOH. Tiga jenis sampel karbon teraktif dihasilkan pada suhu 850, 750 dan 650 °C. Keputusan luas permukaan sampel sekam karbon teraktif ialah 429.82 m2/g (850 °C), 121.39 m2/g (750 °C) dan 93.89 m2/g (650 °C). Nilai ini lebih tinggi jika dibandingkan dengan sekam karbon kawalan iaitu 0.23 m2/g. Saiz liang bagi karbon teraktif sekam padi ialah 2-50 nm iaitu dalam saiz mesoliang. Hasil analisis proksimat dan muktamad turut ditentukan. Proses pengaktifan telah meningkatkan kandungan karbon sampel. Ciri fizikal karbon teraktif ditunjukkan daripada analisis XRD. FTIR menunjukkan kefungsian berbeza karbon sekam padi dan teraktif. Pemerhatian daripada ujian SEM mendapati adanya liang-liang pada permukaan karbon teraktif hasil daripada pengaktifan NaOH.

 

Kata kunci: Karbon teraktif; pengaktifan NaOH; sekam padi; sifat fizikal; sifat kimia

 

REFERENCES

Abdulsalam, M., Hasfalina, C.M., Mohamed, H.A., Abd Karim, S.F. & Faiez, M.S. 2018. Microwave irradiated coconut shell-activated carbon for decolourisation of palm oil mill effluent (POME). Food Research 2(6): 526-534.

Alkhatib, M.F., Mamun, A.A. & Akbar, I. 2015. Application of response surface methodology (RSM) for optimization of color removal from POME by granular activated carbon. International Journal of Environmental Science and Technology 12(4): 1295-1302.

An, D., Guo, Y., Zou, B., Zhu, Y. & Wang, Z. 2011. A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy 35: 1227-1234.

Basta, A.H., Fierro, V., El-Saied, H. & Celzard, A. 2009. 2-steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresource Technology 100: 3941-3947.

Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, C.G. & Almeida, V.C. 2011. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal 174: 117-125.

Chang, K.L., Chen, C.C., Lin, J.H., Hsien, J.F., Hsien, Wang, Y., Zhao, F., Shih, Y.H., Xing, Z.J. & Chen, S.T. 2014. Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution. New Carbon Material 29: 47-54.

Chen, J.S., Zhang, F. & Li, G.D. 2008. Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources. Journal of Colloid and Interface Science 327: 108-114.

Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L. & Changhou, L. 2005.  Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon 43: 2295-2301.

Danish, M. & Ahmad, T. 2018. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews 87: 1-21.

Enaime, G., Ennaciri, K., Ounas, A., Bacaoui, A., Seffen, M., Selmi, T. & Yaacoubi, A. 2017. Preparation and characterization of activated carbon from olive wastes by physical and chemical activation: Application to indigo carmine adsorption. J. Mater. Environ. Sci. 11: 4125-4137.

Foo, K.Y. & Hameed, B.H. 2011.Utilization of rice husks as a feed stock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresources Technology 102: 9814-9817.

Foo, K.Y. & Hameed, B.H. 2012. Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue. Fuel Processing Technology 99: 103-109.

Guo, Y.P. & Rockstraw, D.A. 2007. Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials 100: 12-19.

Guo, Y.P., Yang, S.F., Fu, W.Y., Qi, J.R., Li, R.Z., Wang, Z.C. & Xu, H.D. 2003. Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes Pigments 56: 219-229.

Hamza, U.D., Nasri, N.S., Amin, N.A.S., Mohammed, J. & Zain, H.M. 2016. Characteristics of oil palm shell biochar and activated carbon prepared at different carbonization times. Desalination and Water Treatment 57(17): 7999-8006.

Hidayu, A.R. & Muda, N. 2016. Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Engineering 148: 106-113.

International Union of Pure and Applied Chemistry (IUPAC) 1972. IUPAC Manual of Symbols and Terminology Appendix 2, Pt. 1. Colloid and Surface Chemistry. Pure and Applied Chemistry 31(4): 578-638.

Jabatan Pertanian Malaysia (JPM). 2017. Lapuran Keluasan Tanaman dan Keluaran Padi dan Beras Seluruh Malaysia. Jabatan Pertanian Malaysia. Accessed on 10 June 2019.

Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., del Valle, J.O. & Fernandez-Pereira, C. 2008. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chemical Engineering Journal 144: 42-50.

Kaman, S.P.D., Tan, I.A.W. & Lim, L.L.P. 2017. Palm oil mill effluent treatment using coconut shell - based activated carbon: Adsorption equilibrium and isotherm. MATEC Web of Conferences 87: 03009.

Khadiran, T., Hussein, M.Z., Zainal, Z. & Rusli, R. 2015. Textural and chemical properties of activated carbon prepared from tropical peat soil by chemical activation method. BioResources 10: 986-1007.

Lu, C., Pan, L. & Zhu, B. 2015. Study the static adsorption/desorption of formaldehyde on activated carbon. International Forum on Energy, Environment Science and Materials (IFEESM 2015). pp. 943-947.

Ma, X. & Ouyang, F. 2013. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation.  Applied Surface Science 268: 566-570.

Mohd Iqbaldin, M.N., Khudzir, I., Mohd Azlan, M.I., Zaidi, A.G., Surani, B. & Zubri, Z. 2013. Properties of coconut shell activated carbon. Journal of Tropical Forest Science 25(4): 497-503.

Mopoung, S., Inkum, S. & Anuwetch, L. 2015. Effect of temperature on micropore of activated carbon from sticky rice straw by H3PO4 activation. Carbon - Science and Technology 7(3): 24-29.

Nasri, N.S., Basri, H. & Garba, A. 2015. Synthesis and characterization of low cost-porous carbon from palm oil shell via K2CO3 chemical activation process. Applied Mechanics and Materials 735: 36-40.

Oh, G.H. & Park, C.R. 2002. Preparation and characteristics of rice straw based porous carbon with high adsorption capacity. Fuel 81: 327-336.

Oh, G.H., Yun, C.H. & Park, C.R. 2003. Role of KOH in the one-stage KOH activation of cellulosic biomass. Carbon Science 4: 180-184.

Pandey, B.D., Saima, H.K. & Chattree, A. 2015. Preparation and characterization of activated carbon derived from rice husk by NaOH activation. International Journal of Mathematics and Physical Sciences Research 3(2): 158-164.

Park, C.R. & Oh, G.H. 2002. Preparation and characteristics of rice straw based porous carbon with high absorption capacity. Fuel 81: 327-336.

Perrin, A., Celzard, A., Albiniak, A., Kaczmarczyk, J., Mareche, J.F. & Furdin, G. 2004. NaOH activation of anthracites: Effect of temperature on pore textures and methane storage ability. Carbon 42: 2855-2901.

Puziy, A.M., Poddubnaya, O.I., Martinez-Alonso, A., Suárez-Garcia, F. & Tascón, J.M.D. 2002. Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties. Carbon 40: 1493-1505.

Rhaman, M., Haque, M., Rouf, M., Siddique, M. & Islam, M. 2015. Preparation and characterization of activated carbon & amorphous silica from rice husk. Bangladesh Journal of Scientific and Industrial Research 50(4): 263-270.

Rostamian, R., Heidarpour, M., Mousavi, S.F. & Afyuni, M. 2015. Characterization and sodium sorption capacity of biochar and activated carbon prepared from rice husk. Journal Agricultural Science Technology 17: 1057-1069.

San Miguel, G., Fowler, G.D. & Sollars, C.J. 2003.  A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon 41: 1009-1016.

Schröder, E., Thomauske, K., Weber, C., Hornung, A. & Tumiatti, V. 2007. Experiments on the generation of activated carbon from biomass. Journal of Analytical and Applied Pyrolysis 79(1-2 SPEC. ISS.): 106-111.

Shamsuddin, M.S., Yusoff, N.R.N. & Sulaiman, M.A. 2016. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry 19: 558-565.

Sharma, S. & Bhattacharya, A. 2017. Drinking water contamination and treatment techniques. Applied Water Science 7(3): 1043-1067.

Sobhy, M.Y., Hakim, A.E., Daifullah, M. & Sohair, A.E. 2015. Pore structure characterization of chemically modified biochar derived from rice straw. Environmental Engineering and Management Journal 14(2): 473-480.

Soltani, N., Bahrami, A., Pech-Canul, M.I. & González, L.A. 2015. Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal 264: 899-935.

Srenscek-Nazzal, J., Kaminskaa, W., Michalkiewicza, B. & Korenb, Z. 2013. Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Industrial Crops and Products 47: 153-159.

Viboon, S., Chiravoot, P., Duangdao A. & Duangduen, A. 2008. Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy and Fuels 22: 31-37.

Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H.H. & Chen, Y.X. 2012. Chemical characterizations of rice straw-derived bio char for soil amendment. Biomass Bioenergy 47: 268-276.

Yakout, S.M., El Hakim Daifullah, A.M. & El-Reefy, S.A. 2015. Pore structure characterization of chemically modified biochar derived from rice straw. Environmental Engineering and Management 14(2): 473-480.

Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2017. Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal. Sains Malaysiana 46(5): 773-782.

Zhu, K., Fu, H., Zhang, J., Ly, X., Tang, J. & Xu, X. 2012. Studies on removal of NH4+-N from aqueous solution by using the activated carbons derived from rice husk. Biomass Bioenergy 43: 18-25.

 

*Corresponding author; email: mohamadjanisaad72@gmail.com

   

 

 

previous