Sains Malaysiana 49(9)(2020): 2311-2322
http://dx.doi.org/10.17576/jsm-2020-4909-28
Treatment of Palm Oil Mill Effluent by
Poly(L-Lactic Acid)-Poly(Ethylene Glycol)/Silica Membrane
(Rawatan Efluen Kilang Sawit menggunakan
Membran Poli(L-Asid Laktik)-Poli(Etilena Glikol)/Silika)
FATIMAH ZAHRAH MOHD KAMIL1, NORILYANI IZZATI HASANUDDIN1, RIZAFIZAH OTHAMAN1,2 & FARAH HANNAN ANUAR1,2*
1Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Polymer
Research Centre (PORCE), Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 15 October 2019/Accepted: 8 May 2020
ABSTRACT
Biodegradable
membrane technology has received an increasing interest in many fields of
applications exclusively to preserve the earth. A renewable polymer such as
poly(L-lactic acid) (PLLA) often being introduced with reinforcement material
to improve the characteristics of membranes itself. Herein, this study
highlights the development of membrane from poly(L-lactic acid)-poly(ethylene
glycol) (PLLA-PEG) copolymer with silica (SiO2) in the treatment of
palm oil mill effluent (POME) wastewater. We hypothesized that the
incorporation of SiO2 as a nanofiller promoted PLLA-PEG/SiO2 membrane to have a porous and higher number of pores on the membrane surface.
Therefore, the effect of silica amount added in the PLLA-PEG copolymer membrane
was also investigated and examined by using Fourier transform infrared
spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive
X-ray spectroscopy (EDX). Based on FTIR analysis, the presence of the urethane
(-NHCOO-) functional group indicated the formation of PLLA-PEG copolymer and
SEM micrographs showed porous surface on the membranes with increasing pores
size in a favor of SiO2 amount added. Also, the surface wettability
of membranes was evaluated through water contact angle which render hydrophilic
characteristics. These membranes were subsequently applied for POME filtration
where the test resulted in significant discolouration of POME. Furthermore, the
high percentage removal efficiency of biochemical oxygen demand (BOD), chemical
oxygen demand (COD) and total suspended solid (TSS) up to 99.5% empowers the
treated POME wastewater to be within the range set by the Malaysian Department
of the Environment.
Keywords: Copolymer; membrane; poly(ethylene
glycol); poly(lactic acid); POME
ABSTRAK
Pada
masa kini, teknologi membran terbiodegradasi semakin mendapat perhatian dalam
pelbagai bidang aplikasi khususnya untuk menjaga kesejahteraan bumi. Polimer
yang berasaskan sumber keterbaharuan seperti poli(asid laktik) selalunya
ditambah baik dengan bahan penguat bagi meningkatkan ciri membran tersebut.
Oleh itu, kajian ini memfokuskan kepada perkembangan membran berasaskan
kopolimer poli(L-asid laktik)-poli(etilena glikol) (PLLA-PEG) dengan penambahan
silika bagi rawatan air sisa buangan efluen minyak kelapa sawit. Kami
menjangkakan bahawa penambahan silika sebagai pengisi di dalam membran
PLLA-PEG/SiO2 menjadikan permukaannya berliang dan mampu
meningkatkan bilangan liang. Oleh itu, kesan penambaan berat silika ke dalam
membran kopolimer PLLA-PEG dikaji menggunakan FTIR, SEM dan EDX. Berdasarkan
analisis FTIR, pembentukan kopolimer PLLA-PEG telah dibuktikan dengan kehadiran
kumpulan berfungsi uretana (-NHCOO-) dan mikrograf SEM menunjukkan permukaan
berliang yang terdapat pada membran selain terdapat peningkatan dari segi saiz
liang selepas penambahan berat silika. Seterusnya, kebolehbasahan permukaan membran
telah dinilai melalui analisis sudut sentuhan air kerana telah memperlihatkan
ciri-ciri kehidrofilikan. Kesemua membran ini telah diaplikasikan bagi rawatan
POME yang telah menunjukkan perubahan penyahwarnaan yang signifikan. Tambahan
lagi, kadar peratusan penyingkiran yang tinggi bagi BOD, COD dan TSS sehingga
99.5% telah membuatkan air sisa POME yang terawat berada dalam had pengeluaran
yang telah dikeluarkan oleh Jabatan Alam Sekitar Malaysia.
Kata
kunci: Kopolimer; membran; poli(etilena glikol); poli(L-asid laktik); POME
REFERENCES
Adeleke, A.O., Latiff, A.A.A., Al-Gheethi,
A.A. & Daud, Z. 2017. Optimization of operating parameters of novel
composite adsorbent for organic pollutants removal from POME using response
surface methodology. Chemosphere 174:
232-242.
Ahmed, Y., Yaakob, Z., Akhtar, P. &
Sopian, K. 2015. Production of biogas and performance evaluation of existing
treatment processes in palm oil mill effluent (POME). Renewable and Sustainable Energy Reviews 42: 1260-1278.
Akbari, A., Yegani, R., Pourabbas, B. &
Behboudi, A. 2016. Fabrication and study of fouling characteristics of HDPE/PEG
grafted silica nanoparticles composite membrane for filtration of Humic acid. Chemical Engineering Research and Design 109: 282-296.
Ali Amat, N.A., Tan, Y.H., Lau, W.J., Lai,
G.S., Ong, C.S., Mokhtar, N.M., Sani, N.A.A., Ismail, A.F., Goh, P.S., Chong,
K.C. & Lai, S.O. 2015. Tackling colour issue of anaerobically-treated palm
oil mill effluent using membrane technology. Journal of Water Process Engineering 8: 221-226.
Ang, H.Y., Toong, D., Chow, W.S., Seisilya,
W., Wu, W., Wong, P., Venkatraman,
S.S., Foin, N. & Huang, Y. 2018. Radiopaque fully degradable nanocomposites
for coronary stents. Scientific Reports 8(1): 17409.
Basu, T., Pal, B. & Singh, S. 2018.
Fabrication of core-shell PLGA/PLA-pNIPAM nanocomposites for improved
entrapment and release kinetics of antihypertensive drugs. Particuology 40: 169-176.
Chen, J., Spear, S.K., Huddleston, J.G.
& Rogers, R.D. 2005. Polyethylene glycol and solutions of polyethylene
glycol as green reaction media. Green
Chemistry 7: 64-82.
Chen, W., Su, Y., Zhang, L., Shi, Q., Peng,
J. & Jiang, Z. 2010. In situ generated silica nanoparticles as pore-forming agent for enhanced permeability
of cellulose acetate membranes. Journal of Membrane Science 348(1-2): 75-83.
Chieng, B.W., Ibrahim, N.A., Yunus, W.M.Z.W. & Hussein,
M.Z. 2014. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites:
Effects of graphene nanoplatelets. Polymers 6(1): 93-104.
El-Gendy, A., Abou-zeid, R.E., Salama, A.,
Diab, M.A. & El-Sakhawy, M. 2017. TEMPO-oxidized cellulose
nanofibers/polylactic acid/TiO2 as antibacterial bionanocomposite
for active packaging. Egyptian Journal of
Chemistry 60(6): 1007-1014.
Feifel, S.C. & Lisdat, F. 2011. Silica nanoparticles for
the layer-by-layer assembly of fully electro-active cyctochrome c multilayers. Journal of Nanobiotechnology 9(59): 1-12.
Feng, P., Peng, S., Wu, P., Gao, C., Huang,
W., Deng, Y. & Shuai, C. 2016. A space network structure constructed by
tetraneedlelike ZnO whiskers supporting boron nitride nanosheets to enhance
comprehensive properties of poly(L-lacti acid) scaffolds. Scientific
Reports 6: 33385.
Gaitán, A. & Gacitúa, W. 2018. Morphological and
mechanical characterization of electrospun polylactic acid and microcrystalline
cellulose. BioResources 13(2): 3659-3673.
Ghani, M.S.H., Haan, T.Y., Lun, A.W., Mohammad, A.W., Ngteni,
R. & Yusof, K.M.M. 2018. Fouling assessment of tertiary palm oil mill
effluent (POME) membrane treatment for water reclamation. Journal of
Water Reuse and Desalination 8(3):
412-423.
Gui, Z., Xu, Y., Gao, Y., Lu, C. &
Cheng, S. 2012. Novel polyethylene glycol-based polyester toughened
polylactide. Materials Letters 71:
63-65.
Jose, J.P., Abraham, J., Maria, H.J., Varughese, K.T. &
Thomas, S. 2016. Contact angle studies in XLPE hybrid nanocomposites with
inorganic nanofillers. Macromolecular Symposia 366(1): 66-78.
Kim, J.H. & Lee, K.H. 1998. Effect of PEG additive on
membrane formation by phase inversion. Journal
of Membrane Science 138(2): 153-163.
Liu, H-C., Lee, I-C., Wang, J-H., Yang
S-H., & Young, T-H. 2004. Preparation of PLLA membranes with different
morphologies for culture of MG-63 cells. Biomaterials 25(18): 4047-4056.
Mahatmanti, F.W., Nuryono, N. &
Siswanta, D. 2018. Preparation and characterization of composite membrane
chitosan-silica-polyethylene glycol. Defect and Diffusion Forum 382:
3-6.
Mohd Nizar, M., Hamzah, M.S.A., Abd Razak,
S.I. & Mat Nayan, N.H. 2018. Thermal stability and surface wettability
studies of polylactic acid/halloysite nanotube nanocomposite scaffold for
tissue engineering studies. IOP Conference Series: Materials Science and
Engineering 318: 012006.
Nagarajan, V., Mohanty, A.K. & Misra,
M. 2016. Perspective on polylactic acid (PLA) based sustainable materials for
durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemisty and Engineering 4(6): 2899-2916.
Nasrin, R., Biswas, S., Rashid, T.U.,
Afrin, S., Jahan, R.A., Haque, P. & Rahman, M.M. 2017. Preparation of
chitin-PLA laminated composite for implantable application. Bioactive Materials 2(4): 199-207.
Norfarhana, A.S. 2014. Penyediaan adunan getah asli
terepoksida/poli(vinil klorida)/sekam padi (ENR/PVC/SP) sebagai membran bagi
rawatan air buangan. School of Chemical Sciences and Food Technology, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, Ph.D. Thesis
(Unpublished).
Phaechamud, T. & Chitrattha, S. 2016. Pore formation
mechanism of porous poly(DL-lactic acid) matrix membrane. Materials Science
and Engineering: C 61: 744-752.
Ruf, M.F.H.M., Ahmad, S., Chen, R.S.,
Shahdan, D. & Zailan, F.D. 2018. Tensile and morphology properties of
PLA/LNR blends modified with maleic anhydride grafted-polylactic acid
and-natural rubber. AIP Conference
Proceeding 1940(1): 020015.
Saljoughi, E., Amirilargani, M. &
Mohammadi, T. 2010. Effect of PEG additive and coagulation bath temperature on
the morphology, permeability and thermal/chemical stability of asymmetric CA
membranes. Desalination 262: 72-78.
Sidik,
A.M., Othaman, R. & Anuar, F.H. 2018. The effect of molecular weight on the
surface and permeation of poly(L-lactic acid)-poly(ethylene glycol) membrane
with activated carbon filler. Sains
Malaysiana 47(6): 1181-1187.
Wang, Z., Pan, Z., Wang, J. & Zhao, R.
2016. A novel hierarchical structured poly(lactic acid)/titania fibrous
membrane with excellent antibacterial and air filtration performance. Journal of Nanomaterials 2016: 1-17.
Xian, X., Wang, X., Zhu, Y., Guo, Y. &
Tian, Y. 2018. Effects of MCC content on the structure and performance of
PLA/MCC biocomposites. Journal of
Polymers and the Environment 26: 3484-3492.
Xiong, Z., Zhong, Y., Lin, H., Liu, F., Li,
T. & Li, J. 2017. PDLA/PLLA ultrafiltration membrane with excellent
permeability, rejection and fouling resistance via stereocomplexation. Journal of Membrane Science 533:
103-111.
Yunos, M.Z., Harun, Z., Basri, H. & Ismail, A.F. 2014.
Studies on fouling by natural organic matter (NOM) on polysulfone membranes:
Effect of polyethylene glycol (PEG). Desalination 333(1): 36-44.
Zainal, N.H., Jalani, N.F., Mamat, R. & Astimar, A.A.
2017. A review on the development of palm oil mill effluent (POME) final
discharge polishing treatments. Journal
of Oil Palm Research 29(4): 528-540.
Zainuddin, A.A., Othaman, R., Aqma, W.S.,
Akiyoshi, T., Shinya, T. & Anuar, F.H. 2018. Synthesis and thermal
properties of poly(ethylene glycol)-polydimetylsiloxane crosslinked
copolymers. Sains Malaysiana 47(6): 1117-1122.
Zhu, L., Liu, F., Yu, X. & Xue, L.
2015. Poly(lactic acid) hemodialysis membranes with poly(lactic
acid)-block-poly(2-hydroxyethyl methacrylate) copolymer as additive: Preparation,
characterization, and performance. ACS
Applied Material Interfaces 7(32): 17748-17755.
*Corresponding author; email: farahhannan@ukm.edu.my
|