Sains Malaysiana 49(9)(2020): 2311-2322

http://dx.doi.org/10.17576/jsm-2020-4909-28

 

Treatment of Palm Oil Mill Effluent by Poly(L-Lactic Acid)-Poly(Ethylene Glycol)/Silica Membrane

(Rawatan Efluen Kilang Sawit menggunakan Membran Poli(L-Asid Laktik)-Poli(Etilena Glikol)/Silika)

 

FATIMAH ZAHRAH MOHD KAMIL1, NORILYANI IZZATI HASANUDDIN1, RIZAFIZAH OTHAMAN1,2 & FARAH HANNAN ANUAR1,2*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Polymer Research Centre (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 15 October 2019/Accepted: 8 May 2020

 

ABSTRACT

Biodegradable membrane technology has received an increasing interest in many fields of applications exclusively to preserve the earth. A renewable polymer such as poly(L-lactic acid) (PLLA) often being introduced with reinforcement material to improve the characteristics of membranes itself. Herein, this study highlights the development of membrane from poly(L-lactic acid)-poly(ethylene glycol) (PLLA-PEG) copolymer with silica (SiO2) in the treatment of palm oil mill effluent (POME) wastewater. We hypothesized that the incorporation of SiO2 as a nanofiller promoted PLLA-PEG/SiO2 membrane to have a porous and higher number of pores on the membrane surface. Therefore, the effect of silica amount added in the PLLA-PEG copolymer membrane was also investigated and examined by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Based on FTIR analysis, the presence of the urethane (-NHCOO-) functional group indicated the formation of PLLA-PEG copolymer and SEM micrographs showed porous surface on the membranes with increasing pores size in a favor of SiO2 amount added. Also, the surface wettability of membranes was evaluated through water contact angle which render hydrophilic characteristics. These membranes were subsequently applied for POME filtration where the test resulted in significant discolouration of POME. Furthermore, the high percentage removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solid (TSS) up to 99.5% empowers the treated POME wastewater to be within the range set by the Malaysian Department of the Environment.

 

Keywords: Copolymer; membrane; poly(ethylene glycol); poly(lactic acid); POME

 

ABSTRAK

Pada masa kini, teknologi membran terbiodegradasi semakin mendapat perhatian dalam pelbagai bidang aplikasi khususnya untuk menjaga kesejahteraan bumi. Polimer yang berasaskan sumber keterbaharuan seperti poli(asid laktik) selalunya ditambah baik dengan bahan penguat bagi meningkatkan ciri membran tersebut. Oleh itu, kajian ini memfokuskan kepada perkembangan membran berasaskan kopolimer poli(L-asid laktik)-poli(etilena glikol) (PLLA-PEG) dengan penambahan silika bagi rawatan air sisa buangan efluen minyak kelapa sawit. Kami menjangkakan bahawa penambahan silika sebagai pengisi di dalam membran PLLA-PEG/SiO2 menjadikan permukaannya berliang dan mampu meningkatkan bilangan liang. Oleh itu, kesan penambaan berat silika ke dalam membran kopolimer PLLA-PEG dikaji menggunakan FTIR, SEM dan EDX. Berdasarkan analisis FTIR, pembentukan kopolimer PLLA-PEG telah dibuktikan dengan kehadiran kumpulan berfungsi uretana (-NHCOO-) dan mikrograf SEM menunjukkan permukaan berliang yang terdapat pada membran selain terdapat peningkatan dari segi saiz liang selepas penambahan berat silika. Seterusnya, kebolehbasahan permukaan membran telah dinilai melalui analisis sudut sentuhan air kerana telah memperlihatkan ciri-ciri kehidrofilikan. Kesemua membran ini telah diaplikasikan bagi rawatan POME yang telah menunjukkan perubahan penyahwarnaan yang signifikan. Tambahan lagi, kadar peratusan penyingkiran yang tinggi bagi BOD, COD dan TSS sehingga 99.5% telah membuatkan air sisa POME yang terawat berada dalam had pengeluaran yang telah dikeluarkan oleh Jabatan Alam Sekitar Malaysia.

 

Kata kunci: Kopolimer; membran; poli(etilena glikol); poli(L-asid laktik); POME

 

REFERENCES

Adeleke, A.O., Latiff, A.A.A., Al-Gheethi, A.A. & Daud, Z. 2017. Optimization of operating parameters of novel composite adsorbent for organic pollutants removal from POME using response surface methodology. Chemosphere 174: 232-242.

Ahmed, Y., Yaakob, Z., Akhtar, P. & Sopian, K. 2015. Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME). Renewable and Sustainable Energy Reviews 42: 1260-1278.

Akbari, A., Yegani, R., Pourabbas, B. & Behboudi, A. 2016. Fabrication and study of fouling characteristics of HDPE/PEG grafted silica nanoparticles composite membrane for filtration of Humic acid. Chemical Engineering Research and Design 109: 282-296.

Ali Amat, N.A., Tan, Y.H., Lau, W.J., Lai, G.S., Ong, C.S., Mokhtar, N.M., Sani, N.A.A., Ismail, A.F., Goh, P.S., Chong, K.C. & Lai, S.O. 2015. Tackling colour issue of anaerobically-treated palm oil mill effluent using membrane technology. Journal of Water Process Engineering 8: 221-226.

Ang, H.Y., Toong, D., Chow, W.S., Seisilya, W., Wu, W., Wong, P., Venkatraman, S.S., Foin, N. & Huang, Y. 2018. Radiopaque fully degradable nanocomposites for coronary stents. Scientific Reports 8(1): 17409.

Basu, T., Pal, B. & Singh, S. 2018. Fabrication of core-shell PLGA/PLA-pNIPAM nanocomposites for improved entrapment and release kinetics of antihypertensive drugs. Particuology 40: 169-176.

Chen, J., Spear, S.K., Huddleston, J.G. & Rogers, R.D. 2005. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry 7: 64-82.

Chen, W., Su, Y., Zhang, L., Shi, Q., Peng, J. & Jiang, Z. 2010. In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. Journal of Membrane Science 348(1-2): 75-83.

Chieng, B.W., Ibrahim, N.A., Yunus, W.M.Z.W. & Hussein, M.Z. 2014. Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 6(1): 93-104.

El-Gendy, A., Abou-zeid, R.E., Salama, A., Diab, M.A. & El-Sakhawy, M. 2017. TEMPO-oxidized cellulose nanofibers/polylactic acid/TiO2 as antibacterial bionanocomposite for active packaging. Egyptian Journal of Chemistry 60(6): 1007-1014.

Feifel, S.C. & Lisdat, F. 2011. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cyctochrome c multilayers. Journal of Nanobiotechnology 9(59): 1-12.

Feng, P., Peng, S., Wu, P., Gao, C., Huang, W., Deng, Y. & Shuai, C. 2016. A space network structure constructed by tetraneedlelike ZnO whiskers supporting boron nitride nanosheets to enhance comprehensive properties of poly(L-lacti acid) scaffolds. Scientific Reports 6: 33385.

Gaitán, A. & Gacitúa, W. 2018. Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose. BioResources 13(2): 3659-3673.

Ghani, M.S.H., Haan, T.Y., Lun, A.W., Mohammad, A.W., Ngteni, R. & Yusof, K.M.M. 2018. Fouling assessment of tertiary palm oil mill effluent (POME) membrane treatment for water reclamation. Journal of Water Reuse and Desalination 8(3): 412-423.

Gui, Z., Xu, Y., Gao, Y., Lu, C. & Cheng, S. 2012. Novel polyethylene glycol-based polyester toughened polylactide. Materials Letters 71: 63-65.

Jose, J.P., Abraham, J., Maria, H.J., Varughese, K.T. & Thomas, S. 2016. Contact angle studies in XLPE hybrid nanocomposites with inorganic nanofillers. Macromolecular Symposia 366(1): 66-78.

Kim, J.H. & Lee, K.H. 1998. Effect of PEG additive on membrane formation by phase inversion. Journal of Membrane Science 138(2): 153-163.

Liu, H-C., Lee, I-C., Wang, J-H., Yang S-H., & Young, T-H. 2004. Preparation of PLLA membranes with different morphologies for culture of MG-63 cells. Biomaterials 25(18): 4047-4056.

Mahatmanti, F.W., Nuryono, N. & Siswanta, D. 2018. Preparation and characterization of composite membrane chitosan-silica-polyethylene glycol. Defect and Diffusion Forum 382: 3-6.

Mohd Nizar, M., Hamzah, M.S.A., Abd Razak, S.I. & Mat Nayan, N.H. 2018. Thermal stability and surface wettability studies of polylactic acid/halloysite nanotube nanocomposite scaffold for tissue engineering studies. IOP Conference Series: Materials Science and Engineering 318: 012006.

Nagarajan, V., Mohanty, A.K. & Misra, M. 2016. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemisty and Engineering 4(6): 2899-2916.

Nasrin, R., Biswas, S., Rashid, T.U., Afrin, S., Jahan, R.A., Haque, P. & Rahman, M.M. 2017. Preparation of chitin-PLA laminated composite for implantable application. Bioactive Materials 2(4): 199-207.

Norfarhana, A.S. 2014. Penyediaan adunan getah asli terepoksida/poli(vinil klorida)/sekam padi (ENR/PVC/SP) sebagai membran bagi rawatan air buangan. School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Ph.D. Thesis (Unpublished).

Phaechamud, T. & Chitrattha, S. 2016. Pore formation mechanism of porous poly(DL-lactic acid) matrix membrane. Materials Science and Engineering: C 61: 744-752.

Ruf, M.F.H.M., Ahmad, S., Chen, R.S., Shahdan, D. & Zailan, F.D. 2018. Tensile and morphology properties of PLA/LNR blends modified with maleic anhydride grafted-polylactic acid and-natural rubber. AIP Conference Proceeding 1940(1): 020015.

Saljoughi, E., Amirilargani, M. & Mohammadi, T. 2010. Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes. Desalination 262: 72-78.

Sidik, A.M., Othaman, R. & Anuar, F.H. 2018. The effect of molecular weight on the surface and permeation of poly(L-lactic acid)-poly(ethylene glycol) membrane with activated carbon filler. Sains Malaysiana 47(6): 1181-1187.

Wang, Z., Pan, Z., Wang, J. & Zhao, R. 2016. A novel hierarchical structured poly(lactic acid)/titania fibrous membrane with excellent antibacterial and air filtration performance. Journal of Nanomaterials 2016: 1-17.

Xian, X., Wang, X., Zhu, Y., Guo, Y. & Tian, Y. 2018. Effects of MCC content on the structure and performance of PLA/MCC biocomposites. Journal of Polymers and the Environment 26: 3484-3492.

Xiong, Z., Zhong, Y., Lin, H., Liu, F., Li, T. & Li, J. 2017. PDLA/PLLA ultrafiltration membrane with excellent permeability, rejection and fouling resistance via stereocomplexation. Journal of Membrane Science 533: 103-111.

Yunos, M.Z., Harun, Z., Basri, H. & Ismail, A.F. 2014. Studies on fouling by natural organic matter (NOM) on polysulfone membranes: Effect of polyethylene glycol (PEG). Desalination 333(1): 36-44.

Zainal, N.H., Jalani, N.F., Mamat, R. & Astimar, A.A. 2017. A review on the development of palm oil mill effluent (POME) final discharge polishing treatments. Journal of Oil Palm Research 29(4): 528-540.

Zainuddin, A.A., Othaman, R., Aqma, W.S., Akiyoshi, T., Shinya, T. & Anuar, F.H. 2018. Synthesis and thermal properties of poly(ethylene glycol)-polydimetylsiloxane crosslinked copolymers. Sains Malaysiana 47(6): 1117-1122.

Zhu, L., Liu, F., Yu, X. & Xue, L. 2015. Poly(lactic acid) hemodialysis membranes with poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) copolymer as additive: Preparation, characterization, and performance. ACS Applied Material Interfaces 7(32): 17748-17755.

 

*Corresponding author; email: farahhannan@ukm.edu.my

     

 

 

previous