Sains Malaysiana 50(10)(2021): 2869-2876
http://doi.org/10.17576/jsm-2021-5010-02
Ultrastructural Changes of the
Digestive Tract of Pomacea canaliculata Exposed to Copper at Lethal Concentration
(Perubahan Ultrastruktur Saluran Pencernaan Pomacea canaliculata Terdedah kepada Tembaga pada Kepekatan Maut
VIPAWEE
DUMMEE1,2, MALEEYA KRUATRACHUE1, SOMBAT SINGHAKAEW1 & PHANWIMOL TANHAN3*
1Department of Biology, Faculty of Science,
Mahidol University, Bangkok 10400, Thailand
2Faculty of Technology and Environment,
Prince of Songkla University, Phuket Campus, Kathu,
Phuket 83120, Thailand
3Department of Pharmacology, Faculty of
Veterinary Medicine, Kasetsart Univesity,
Bangkok 10900, Thailand
Received:
2 July 2020/Accepted: 19 February 2021
ABSTRACT
The
present study was undertaken to elucidate the basis of cellular reactions and
to verify the suitability of Pomacea canaliculata digestive tract ultrastructure as a
biomarker for assessing the Cu pollution in freshwater environments.
Two-month-old P. canaliculata were exposed to
96-h lethal concentration of Cu (0.15 mg L-1) for 96 h. Electron
microscope investigations showed different alterations of organelles in the
epithelial cells lining the esophagus and intestine. The most striking changes
were damages to the mitochondria, RER, and nucleus typified by loss of cristae
and degeneration of mitochondria; degranulation and fragmentation of RER. In
nucleus, karyolysis and rupture of nuclear envelope
were observed. These changes were attributed to membrane destabilization and
increased membrane permeability to ions under the influence of toxicants or
heavy metals. These findings indicate the possibility of using the P. canaliculata as biomonitor for
Cu contamination in the freshwater environment.
Keywords:
Cu; digestive tract; Pomacea canaliculata; ultrastructure
ABSTRAK
Kajian ini dijalankan untuk menjelaskan asas reaksi sel dan untuk mengesahkan kesesuaian ultrastruktur saluran pencernaanPomacea canaliculata sebagai penanda biologi untuk menilai pencemaran Cu di persekitaran air tawar. P. canaliculata yang berusia dua bulan terdedah kepada kepekatan maut Cu 96 jam (0.15 mg
L-1) selama 96 jam. Penyelidikan mikroskop elektron menunjukkan perubahan organel yang berlainan pada sel epitelium yang melapisi esofagus dan usus. Perubahan yang paling ketara adalah kerosakan pada mitokondria, RER dan nukleas yang ditandai dengan kehilangan krista dan degenerasi mitokondria; degranulasi dan pemecahan RER. Dalam nukleas, kariolisis dan sampul nuklear pecah diperhatikan. Perubahan ini disebabkan oleh ketidakstabilan membran dan peningkatan kebolehtelapan membran pada ion
di bawah pengaruh racun atau logam berat. Penemuan ini menunjukkan kemungkinan menggunakanP. canaliculata sebagai biomonitor untuk pencemaran Cu di persekitaran air tawar.
Kata kunci: Cu; Pomacea canaliculata; saluran pencernaan; ultrastruktur
REFERENCES
AbdAllah, A.T. & Moustafa, M.A.
2002. Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis, chemical analysis,
light and electron microscopy. Environmental
Pollution 116(2): 185-191.
Al-Subiai,
S.N., Moody, A.J., Mustafa, S.A. & Jha, A.N. 2011. A multiple biomarker
approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis. Ecotoxicology and Environmental Safety 74(7): 1913-1920.
Atli,
G. & Grosell, M. 2016. Characterization and response of antioxidant systems
in the tissues of the freshwater pond snail (Lymnaea stagnalis) during acute copper exposure. Aquatic Toxicology 176: 38-44.
Au,
D.W.T. 2004. The application of histo-cytopathological biomarkers in marine
pollution monitoring: A review. Marine
Pollution Bulletin 48(9-10): 817-834.
Binelli,
A., Cogni, D., Parolini, M. & Provini, A. 2010. Multi-biomarker approach to
investigate the state of contamination of the R. Lambro/R. Po confluence
(Italy) by zebra mussel (Dreissena
polymorpha). Chemosphere 79(5):
518-528.
Burger,
J. & Gochfeld, M. 2001. On developing bioindicators for human and
ecological health. Environmental Monitoring
and Assessment 66(1): 23-46.
Chambers,
J.E., Boone, J.S., Carr, R.L., Chambers, H.W. & Straus, D.L. 2002.
Biomarkers as predictors in health and ecological risk assessment. Human and Ecological Risk Assessment: An
International Journal 8(1): 165-176.
Cotran,
R.S., Kumar, V. & Robbin, S.L. 1994. Pathologic
Basic of Disease. Philadelphia: W.B. Saunders Company.
David,
E., Tanguy, A., Riso, R., Quiniou, L., Laroche, J. & Moraga, D. 2012.
Responses of Pacific oyster Crassostrea
gigas populations to abiotic stress in environmentally contrasted estuaries
along the Atlantic coast of France. Aquatic
Toxicology 109: 70-79.
de
Oliveira-Filho, E.C., Lopes, R.M. & Paumgartten, F.J.R. 2004. Comparative
study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56(4): 369-374.
Dummee,
V., Tanhan, P., Kruatrachue, M., Damrongphol, P. & Pokethitiyook, P. 2015.
Histopathological changes in snail, Pomacea
canaliculata, exposed to sub-lethal copper sulfate concentrations. Ecotoxicology and Environmental Safety 122: 290-295.
Dummee,
V., Kruatrachue, M., Trinachartvanit, W., Tanhan, P., Pokethitiyook, P. & Damrongphol,
P. 2012. Bioaccumulation of heavy metals in water, sediments, aquatic plant and
histopathological effects on the golden apple snail in Beung Boraphet
reservoir, Thailand. Ecotoxicology and
Environmental Safety 86: 204-212.
Eisler,
R. 1998. Copper hazards to fish, wildlife, and invertebrates: A synotic review.
US Geological Survey, Biological Resources Division, Biological Science Report
USGS/BDR/BSR 1997-0002.
Gernhöfer,
M., Pawert, M., Schramm, M., Müller, E. & Triebskorn, R. 2001. Ultrastructural
biomarkers as tools to characterize the health status of fish in contaminated
streams. Journal of Aquatic Ecosystem
Stress and Recovery 8(3-4): 241-260.
Ghadially,
F.N. 1988. Ultrastructural Pathology of
the Cell and Matrix. 3rd ed. Guildford: Butterworth-Heinemann.
Goyer,
R.A. & Rhyne, B.C. 1975. Pathological effects of lead. International Review of Experimental Pathology 12: 1-77.
Gupta,
S.K. & Singh, J. 2011. Evaluation of mollusc as sensitive indicator of
heavy metal pollution in aquatic system: A review. The IIOAB Journal 2(1): 49-57.
Hoang,
T.C., Pryor, R.L., Rand, G.M. & Frakes, R.A. 2011. Bioaccumulation and
toxicity of copper in outdoor freshwater microcosms. Ecotoxicology and Environmental Safety 74(4): 1011-1020.
Hoang,
T.C., Rogevich, E.C., Rand, G.M., Gardinali, P.R., Frakes, R.A. & Bargar,
T.A. 2008. Copper desorption in flooded agricultural soils and toxicity to the
Florida apple snail (Pomacea paludosa):
Implications in Everglades restoration. Environmental
Pollution 154(2): 338-347.
Kim,
Y., Powell, E.N., Wade, T.L. & Presley, B.J. 2008. Relationship of
parasites and pathologies to contaminant body burden in sentinel bivalves: NOAA
status and trends ‘Mussel Watch’ program. Marine
Environmental Research 65(2): 101-127.
Kulac,
B., Atli, G. & Canli, M. 2013. Response of ATPases in the osmoregulatory
tissues of freshwater fish Oreochromis
niloticus exposed to copper in increased salinity. Fish Physiology and Biochemistry 39(2): 391-401.
Lin,
M., Chandramani-Shivalingappa, P., Jin, H., Ghosh, A., Anantharam, V., Ali, S.,
Kanthasamy, A.G. & Kanthasamy, A. 2012. Methamphetamine-induced
neurotoxicity linked to ubiquitin-proteosome system dysfunction and
autophagy-related changes that can be modulated by protein kinase C delta in
dopaminergic neuronal cells. Neuroscience 210: 308-332.
Moore,
M.N. 1985. Cellular responses to pollutants. Marine Pollution Bulletin 16(4): 134-139.
Moore,
M.N. 1979. Cellular responses to polycyclic aromatic hydrocarbons and
phenobarbital in Mytilus edulis. Marine Environmental Research 2(4):
255-263.
Nott,
J.A. & Moore, M.N. 1987. Effects of polycyclic aromatic hydrocarbons on
molluscan lysosomes and endoplasmic reticulum. Histochemistry Journal 19: 357-368.
Pawert,
M., Müller, E. & Triebskorn, R. 1998. Ultrastructural changes in fish gills
as biomarker to assess small stream pollution. Tissue and Cell 30(6): 617-626.
Priault,
M., Salin, B., Schaeffer, J., Vallette, F.M., di Rago, J.P. & Martinou,
J.C. 2005. Impairing the bioenergetic status and the biogenesis of mitochondria
triggers mitophagy in yeast. Cell Death
& Differentiation 12(12): 1613-1621.
Rez,
G. 1986. Electron microscopic approaches to environmental toxicity. Acta Biologica Hungarica 37: 31-45.
Rodriguez-Iruretagoiena,
A., Rementeria, A., Zaldibar, B., de Vallejuelo, S.F.-O., Gredilla, A., Arana,
G. & de Diego, A. 2016. Is there a direct relationship between stress
biomarkers in oysters and the amount of metals in the sediments where they
inhabit? Marine Pollution Bulletin 111(1): 95-105.
Sawasdee,
B., Köhler, H.R. & Triebskorn, R. 2011. Histopathological effects of copper
and lithium in the ramshorn snail, Marisa
cornuarietis (Gastropoda, Prosobranchia). Chemosphere 85(6): 1033-1039.
Sparks,
A.K. 1972. Invertebrate Pathology.
Noncommunicable Diseases. New York: Academic Press.
Supanopas,
P., Sretarugsa, P., Kruatrachue, M., Pokethitiyook, P. & Upatham, E.S.
2005. Acute and subchronic toxicity of lead to the spotted babylon, Babylonia areolata (Neogastropoda,
Buccinidae). Journal of Shellfish
Research 24(1): 91-98.
Tanhan,
P., Sretarugsa, P., Pokethitiyook, P., Kruatrachue, M. & Upatham, E.S.
2005. Histopathological alterations in the edible snail, Babylonia areolata (spotted babylon), in acute and subchronic
cadmium poisoning. Environmental
Toxicology 20(2): 142-149.
Triebskorn,
R. 1989. Ultrastructural changes in the digestive system of Deroceras reticulatum (Mollusca:
Gastropoda) induced by lethal and sublethal concentrations of the carbamate
molluscicide cloethocarb. Malacologia 32: 89-106.
Triebskorn,
R., Köhler, H.R., Honnen, W., Schramm, M., Adams, S.M. & Müller, E. 1997.
Induction of heat shock proteins, changes in liver ultrastructure, and
alterations of fish behavior: Are these biomarkers related and are they useful
to reflect the state of pollution in the field? Journal of Aquatic Ecosystem Stress and Recovery 6(1): 57-73.
Wester,
P.W., van der Ven, L.T.M., Vethaak, A.D., Grinwis, G.C.M. & Vos, J.G. 2002.
Aquatic toxicology: opportunities for enhancement through histopathology. Environmental Toxicology and Pharmacology 11(3-4): 289-295.
*Corresponding
author; email: fvetpmt@ku.ac.th
|