Sains Malaysiana 50(10)(2021): 2945-2956

http://doi.org/10.17576/jsm-2021-5010-09

 

Sintesis, Aktiviti Antiplasmodium dan Kesitotoksikan secara in vitro Sebatian Porfirin Logam ke atas Strain Plasmodium falciparum K1

(Synthesis, in vitro Antiplasmodial Activity and Cytotoxicity of Metalloporphyrins against Plasmodium falciparum K1 Strain)

 

 NUUR HAZIQAH MOHD RADZUAN1, NUR AQILAH ZAHIRAH NORAZMI1, AMATUL HAMIZAH ALI1, MUNTAZ ABU BAKAR1, HANI KARTINI AGUSTAR2, MOHD RIDZUAN MOHD ABD RAZAK3 & NURUL IZZATY HASSAN1*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Herbal Medicine Research Centre, Institute for Medical Research, National Institute of Health (NIH) Complex, Ministry of Health Malaysia, 40170 Shah Alam, Selangor Darul Ehsan, Malaysia

 

Received: 26 October 2020/Accepted: 14 February 2021

 

 

ABSTRAK

Jangkitan malaria adalah penyakit berjangkit serius yang disebabkan oleh parasit plasmodium dan harus dirawat sebagai perubatan kecemasan. Sehingga kini, tiada vaksin yang sudah dikomersialkan untuk mencegah malaria. Enam sebatian porfirin logam nikel(II) dan zink(II) berasaskan porfirinmeso bebas bes 5,15-difenilporfirin (2), 5,15-diheksilporfirin (3) dan 5,10,15,20-tetrafenilporfirin (4) iaitu NiDDHP, NiDPP, NiTPP, ZnDHP, ZnDPP dan ZnTPP dihasilkan melalui penyejatan Lindsey sebelum dicirikan secara spektroskopi (resonans magnet nukleus, ultra lembayung boleh nampak, spektrometri jisim) dan fizikal (takat lebur). Aktiviti antiplasmodium dan kesitotoksikan secarain vitro terhadap strain rintang-klorokuina, P. falciparum K1 dinilai dan dibandingkan dengan aktiviti antiplasmodium dadah rujukan seperti klorokuina dan artemisinin. ZnDHP, ZnTPP dan NiDPP merencat pertumbuhan parasit dengan 50% kepekatan perencatan berkesan (EC50) dalam julat aktiviti antiplasmodium sederhana iaitu 21.4 sehingga 36.0 µM. Aktiviti kesitotoksikan terhadap sel mamalia Vero yang ditunjukkan oleh NiDPP, ZnDHP dan ZnTPP berada dalam julat tidak toksik iaitu 97 sehingga 587 µM. ZnDHP mempunyai nilai indeks pemilihan yang paling tinggi iaitu 27.2 µM, menunjukkan aktiviti antiplasmodium yang selektif terhadap perencatan plasmodium dan tidak toksik terhadap sel mamalia.

 

Kata kunci: Antiplasmodium; in vitro; kesitotoksikan; P. falciparum K1; porfirin logam


 

ABSTRACT

Malaria infection is a severe infectious disease caused by plasmodium parasites and should be treated as emergency medicine. Until now, no vaccine has been commercialized to prevent malaria. Six nickel(II) and zinc(II) metal porphyrin compounds based on free meso porphyrin base 5,15-diphenylporphrin (2), 5,15-dihexylporphyrin (3), and 5,10,15,20-tetraphenyl porphyrin (4), known as NiDDHP, NiDPP, NiTPP, ZnDHP, ZnDPP, and ZnTPP are produced through Lindsey condensation before being characterized by spectroscopy (nuclear magnetic resonance, ultraviolet-visible spectrophotometry, mass spectrometry) and physical (melting point). In vitro antiplasmodial and cytotoxicity activities against the P. falciparum K1 strain were assessed and compared to the antiplasmodial activity of referral drugs such as chloroquine artemisinin. ZnDHP, ZnTPP, and NiDPP recorded parasites' growth with 50% effective inhibition concentration (EC50) in a range of 21.4 to 36.0 μM. Cytotoxic activities of NiDPP, ZnDHP, and ZnTPP against Vero mammalian cells were in a non-toxic range of about 97 to 587 µM. ZnDHP possessed the highest selectivity index value of 27.2 µM, indicating that the compound's antiplasmodial effect was a selective plasmodial inhibition and non-toxic to the mammalian cells.

 

Keywords: Antiplasmodial; cytotoxicity; in vitro; metalloporphyrin; P. falciparum K1

 

 

REFERENCES

Abiodun, B., Salami, A., Matthew, O. & Odedokun, S. 2013. Potential impacts of afforestation on climate change and extreme events in Nigeria. Climate Dynamics 41. doi:10.1007/s00382-012-1523-9.

Alexandrova, R., Kalfin, R., Tudose, R. & Fagadar-Cosma, E. 2018. Comparative cytotoxicity assays performed using a free porphyrin and its Zn(II), Co(II) and Cu() Complexes. Influence of optical and aggregation properties. Studia Universitatis Babeș-Bolyai Chemia 63: 65-77. doi:10.24193/subbchem.2018.4.05.

Ali, A., Sudi, S., Sidek, H., Embi, N. & Basir, R. 2017. The antimalarial effect of curcumin is mediated by the inhibition of glycogen synthase kinase-3β. Journal of Medicinal Food 20: 152-161. doi:10.1089/jmf.2016.3813.

Anderson, H.L. 1994. Conjugated porphyrin ladders. Inorganic Chemistry 33(5): 972-981. doi:10.1021/ic00083a022.

Atheaya, H., Khan, S.I., Mamgain, R. & Rawat, D.S. 2008. Synthesis, thermal stability, antimalarial activity of symmetrically and asymmetrically substituted tetraoxanes. Bioorganic & Medicinal Chemistry Letters 18(4): 1446-1449. doi:https://doi.org/10.1016/j.bmcl.2007.12.069.

Banziger, S.D. & Ren, T. 2019. Syntheses, structures and bonding of 3D metal alkynyl complexes of cyclam and its derivatives. Journal of Organometallic Chemistry 885: 39-48. doi:10.1016/j.jorganchem.2019.01.024.

Begum, K., Kim, H.S., Kumar, V., Stojiljkovic, I. & Wataya, Y. 2003. In vitro antimalarial activity of metalloporphyrins against Plasmodium falciparum. Parasitology Research 90(3): 221-224. doi:10.1007/s00436-003-0830-9.

Benoit-Vical, F., Robert, A. & Meunier, B. 2000. In vitro and in vivo potentiation of artemisinin and synthetic endoperoxide antimalarial drugs by metalloporphyrins. Antimicrobial Agents and Chemotherapy 44(10): 2836-2841. doi:10.1128/AAC.44.10.2836-2841.2000.

Cole, K.A., Ziegler, J., Evans, C.A. & Wright, D.W. 2000. Metalloporphyrins inhibit β-hematin (hemozoin) formation. Journal of Inorganic Biochemistry 78(2): 109-115. https://doi.org/10.1016/S0162-0134(99)00216-0.

Dar, O., Khan, M.S. & Adagu, I. 2008. The potential use of methotrexate in the treatment of falciparum malaria: in vitro assays against sensitive and multidrug-resistant Falciparum strains. Japanese Journal of Infectious Diseases 61(3): 210-211.

Dive, D. & Biot, C. 2008. Ferrocene conjugates of chloroquine and other antimalarials: The development of ferroquine, a new antimalarial. ChemMedChem 3(3): 383-391. doi:10.1002/cmdc.200700127.

Dolabela, M., Oliveira, S., Nascimento, J., Peres, J., Wagner, H., Póvoa, M. & De Oliveira, A. 2008. In vitro antiplasmodial activity of extract and constituents from Esenbeckia febrifuga, a plant traditionally used to treat malaria in the Brazilian Amazon. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 15: 367-372. doi:10.1016/j.phymed.2008.02.001.

Fairhurst, R.M. & Dondorp, A.M. 2016. Artemisinin-resistant Plasmodium falciparum malaria. Microbiology Spectrum 4(3): 1-16. doi:10.1128/microbiolspec.EI10-0013-2016.

Filho, A.A., Resende, D.O., Fukui, M.J., Santos, F.F., Pauletti, P.M., Cunha, W.R., Silva, M.L.A., Gregório, L.E., Bastos, J.K. & Nanayakkara, N.P.D. 2009. In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from Baccharis dracunculifolia D.C. (Asteraceae). Fitoterapia 80: 478-482. doi:10.1016/j.fitote.2009.06.007.

Hamed, K. & Stricker, K. 2016. Tackling the problems associated with antimalarial medicines of poor quality. Current Topics in Malaria. InTech. doi:10.5772/64671. hlm. 285-303.

Hubin, T.J., Amoyaw, P.N.A., Roewe, K.D., Simpson, N.C., Maples, R.D., Carder Freeman, T.N., Cain, A.N., Le, J.G., Archibald, S.J., Khan, S.I., Tekwani, B.L. & Faruk Khan, M.O. 2014. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. Bioorganic and Medicinal Chemistry 22(13): 3239-3244. doi:10.1016/j.bmc.2014.05.003.

Hussin, N., Lim, Y.A.L., Goh, P.P., William, T., Jelip, J. & Mudin, R.N. 2020. Updates on malaria incidence and profile in Malaysia from 2013 to 2017. Malaria Journal 19(1): 55. doi:10.1186/s12936-020-3135-x.

Kumar, N., Khan, S.I., Sharma, M., Atheaya, H. & Rawat, D.S. 2009. Iodine-catalyzed one-pot synthesis and antimalarial activity evaluation of symmetrically and asymmetrically substituted 3,6-diphenyl[1,2,4,5]tetraoxanes. Bioorganic & Medicinal Chemistry Letters 19(6): 1675-1677. doi:https://doi.org/10.1016/j.bmcl.2009.01.103.

Lindsey, J.S., Schreiman, I.C., Hsu, H.C., Kearney, P.C. & Marguerettaz, A.M. 1987. Rothemund and Adler-Longo reactions revisited: Synthesis of tetraphenylporphyrins under equilibrium conditions. The Journal of Organic Chemistry 52(5): 827-836. DOI: 10.1021/jo00381a022.

Li, K., Zhang, J., Zhang, J.J., Zhang, Z.W., Zhuang, Z.J., Xiao, D., Lin, H.H. & Yu, X.Q. 2008. Ferrocene-bridging dinuclear cyclen copper(II) complexes as high efficient artificial nucleases: Design, synthesis and interaction with DNA. Applied Organometallic Chemistry 22(5): 243-248. doi:10.1002/aoc.1384.

Li, Y. 2012. Qinghaosu (artemisinin): Chemistry and pharmacology. Acta Pharmacologica Sinica 33(9): 1141-1146. doi:10.1038/aps.2012.104.

Mamardashvili, G., Zhdanova, D., Mamardashvili, N., Koifman, O. & Dehaen, W. 2017. Catalytic and inhibiting effect of amino acids on the porphyrin metallation reactions. Journal of Porphyrins and Phthalocyanines 21: 671-679. doi:10.1142/S1088424617500663.

Mamat, N., Abdullah, H., Hapidin, H. & Mokhtar, N. 2020. Gallic acid and methyl gallate enhance antiproliferative effect of cisplatin on cervical cancer (HeLa) cells. Sains Malaysiana  49: 1107-1114. doi:10.17576/jsm-2020-4905-15.

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65(1): 55-63. doi:https://doi.org/10.1016/0022-1759(83)90303-4.

Navarro, M., Castro, W. & Biot, C. 2012. Bioorganometallic compounds with antimalarial targets: Inhibiting hemozoin formation. Organometallics 31(16): 5715-5727. doi:10.1021/om300296n.

Okebe, J., Bojang, K. & D’Alessandro, U. 2014. Use of artemisinin and its derivatives for the treatment of Malaria in children. Pediatric Infectious Disease Journal 33(5): 522-524. doi:10.1097/INF.0000000000000306.

Peter, S. & Aderibigbe, B.A. 2019. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules 24(19). doi:10.3390/molecules24193604.

Radfar, A., Mendez, D., Moneriz, C., Linares, M., Marín-García, P., Puyet, A., Diez, A. & Bautista, J.M. 2009. Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nature Protocols 4: 1899-1915. doi:10.1038/nprot.2009.198.

Sarr, O., Perrotey, S., Fall, I., Ennahar, S., Zhao, M., Diop, Y.M., Candolfi, E. & Marchioni, E. 2011. Icacina senegalensis (Icacinaceae), traditionally used for the treatment of malaria, inhibits in vitro Plasmodium falciparum growth without host cell toxicity. Malaria Journal 10: 85. doi:10.1186/1475-2875-10-85.

Sullivan, D.J., Gluzman, I.Y., Russell, D.G. & Goldberg, D.E. 1996. On the molecular mechanism of chloroquine’s antimalarial action. Proceedings of the National Academy of Sciences of the United States of America 93(21): 11865-11870.

Summers, K.L. 2019. A Structural chemistry perspective on the antimalarial properties of thiosemicarbazone metal complexes. Mini-Reviews in Medicinal Chemistry 19(7): 569-590. doi:10.2174/1389557518666181015152657.

Tanamatayarat, P., Sotanaphun, U. & Poobrasert, O. 2011. Thai plants from Doi Tung: Brine shrimp lethality, antioxidative activity and combination effect with L-ascorbic acid. Natural Product Research 26: 919-925. doi:10.1080/14786419.2010.534469.

Yong, A.S.J., Navaratnam, P., Kadirvelu, A. & Pillai, N. 2018. Re-emergence of malaria in Malaysia: A review article. OALib 5(2): 1-16. doi:10.4236/oalib.1104298.

Zakaria, N.H., Hassan, N.I. & Wai, L.K. 2020. Molecular docking study of the interactions between Plasmodium falciparum lactate dehydrogenase and 4-aminoquinoline hybrids. Sains Malaysiana 49(8): 1905-1913. doi:10.17576/jsm-2020-4908-12.

 

*Corresponding author; email: drizz@ukm.edu.my

   

 

 

previous