Sains Malaysiana 50(10)(2021): 2945-2956
http://doi.org/10.17576/jsm-2021-5010-09
Sintesis, Aktiviti Antiplasmodium dan Kesitotoksikan secara in
vitro Sebatian Porfirin Logam ke atas Strain Plasmodium falciparum K1
(Synthesis, in vitro Antiplasmodial Activity and Cytotoxicity of Metalloporphyrins against Plasmodium falciparum K1 Strain)
NUUR
HAZIQAH MOHD RADZUAN1, NUR AQILAH ZAHIRAH NORAZMI1, AMATUL HAMIZAH ALI1, MUNTAZ ABU
BAKAR1, HANI KARTINI AGUSTAR2, MOHD RIDZUAN MOHD
ABD RAZAK3 &
NURUL IZZATY HASSAN1*
1Department of Chemical Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department
of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
3Herbal
Medicine Research Centre, Institute for Medical Research, National Institute of
Health (NIH) Complex, Ministry of Health Malaysia, 40170 Shah Alam, Selangor Darul Ehsan, Malaysia
Received:
26 October 2020/Accepted: 14 February 2021
ABSTRAK
Jangkitan malaria adalah penyakit berjangkit serius yang disebabkan oleh parasit plasmodium dan harus dirawat sebagai perubatan kecemasan. Sehingga kini, tiada vaksin yang sudah dikomersialkan untuk mencegah malaria. Enam sebatian porfirin logam nikel(II) dan zink(II) berasaskan porfirinmeso bebas bes 5,15-difenilporfirin (2), 5,15-diheksilporfirin (3) dan 5,10,15,20-tetrafenilporfirin (4) iaitu NiDDHP, NiDPP, NiTPP, ZnDHP, ZnDPP dan ZnTPP dihasilkan melalui penyejatan Lindsey sebelum dicirikan secara spektroskopi (resonans magnet nukleus, ultra lembayung boleh nampak, spektrometri jisim) dan fizikal (takat lebur). Aktiviti antiplasmodium dan kesitotoksikan secarain vitro terhadap strain rintang-klorokuina, P. falciparum K1 dinilai dan dibandingkan dengan aktiviti antiplasmodium dadah rujukan seperti klorokuina dan artemisinin. ZnDHP, ZnTPP dan NiDPP merencat pertumbuhan parasit dengan 50% kepekatan perencatan berkesan (EC50) dalam julat aktiviti antiplasmodium sederhana iaitu 21.4 sehingga 36.0 µM. Aktiviti kesitotoksikan terhadap sel mamalia Vero yang ditunjukkan oleh NiDPP, ZnDHP dan ZnTPP berada dalam julat tidak toksik iaitu 97 sehingga 587 µM. ZnDHP mempunyai nilai indeks pemilihan yang paling tinggi iaitu 27.2 µM, menunjukkan aktiviti antiplasmodium yang selektif terhadap perencatan plasmodium dan tidak toksik terhadap sel mamalia.
Kata kunci: Antiplasmodium; in vitro; kesitotoksikan; P. falciparum K1; porfirin logam
ABSTRACT
Malaria infection is a severe infectious disease
caused by plasmodium parasites and should be treated as emergency medicine.
Until now, no vaccine has been commercialized to prevent malaria. Six
nickel(II) and zinc(II) metal porphyrin compounds based on free meso porphyrin
base 5,15-diphenylporphrin (2), 5,15-dihexylporphyrin (3), and
5,10,15,20-tetraphenyl porphyrin (4), known as NiDDHP, NiDPP, NiTPP, ZnDHP, ZnDPP, and ZnTPP are produced through Lindsey condensation before being characterized by
spectroscopy (nuclear magnetic resonance, ultraviolet-visible
spectrophotometry, mass spectrometry) and physical (melting point). In vitro antiplasmodial and cytotoxicity activities against the P. falciparum K1 strain were
assessed and compared to the antiplasmodial activity
of referral drugs such as chloroquine artemisinin. ZnDHP, ZnTPP, and NiDPP recorded parasites' growth
with 50% effective inhibition concentration (EC50) in a range of
21.4 to 36.0 μM. Cytotoxic activities of NiDPP, ZnDHP, and ZnTPP against
Vero mammalian cells were in a non-toxic range of about 97 to 587 µM. ZnDHP possessed
the highest selectivity index value of
27.2 µM, indicating that the compound's antiplasmodial effect was a selective plasmodial inhibition and non-toxic to the mammalian
cells.
Keywords: Antiplasmodial; cytotoxicity; in
vitro; metalloporphyrin; P. falciparum K1
REFERENCES
Abiodun, B., Salami, A., Matthew, O. & Odedokun, S. 2013.
Potential impacts of afforestation on climate change and extreme events in
Nigeria. Climate Dynamics 41. doi:10.1007/s00382-012-1523-9.
Alexandrova, R., Kalfin, R., Tudose,
R. & Fagadar-Cosma, E. 2018. Comparative cytotoxicity assays performed
using a free porphyrin and its Zn(II), Co(II) and Cu() Complexes. Influence of
optical and aggregation properties. Studia Universitatis Babeș-Bolyai
Chemia 63: 65-77. doi:10.24193/subbchem.2018.4.05.
Ali, A., Sudi, S., Sidek, H., Embi,
N. & Basir, R. 2017. The antimalarial effect of curcumin is mediated by the
inhibition of glycogen synthase kinase-3β. Journal of Medicinal Food 20: 152-161. doi:10.1089/jmf.2016.3813.
Anderson, H.L. 1994. Conjugated
porphyrin ladders. Inorganic Chemistry 33(5): 972-981.
doi:10.1021/ic00083a022.
Atheaya, H., Khan, S.I., Mamgain, R.
& Rawat, D.S. 2008. Synthesis, thermal stability, antimalarial activity of
symmetrically and asymmetrically substituted tetraoxanes. Bioorganic & Medicinal
Chemistry Letters 18(4): 1446-1449.
doi:https://doi.org/10.1016/j.bmcl.2007.12.069.
Banziger, S.D. & Ren, T. 2019.
Syntheses, structures and bonding of 3D metal alkynyl complexes of cyclam and
its derivatives. Journal of Organometallic Chemistry 885: 39-48.
doi:10.1016/j.jorganchem.2019.01.024.
Begum, K., Kim, H.S., Kumar, V.,
Stojiljkovic, I. & Wataya, Y. 2003. In vitro antimalarial activity
of metalloporphyrins against Plasmodium falciparum. Parasitology
Research 90(3): 221-224. doi:10.1007/s00436-003-0830-9.
Benoit-Vical, F., Robert, A. &
Meunier, B. 2000. In vitro and in vivo potentiation of
artemisinin and synthetic endoperoxide antimalarial drugs by metalloporphyrins. Antimicrobial Agents and Chemotherapy 44(10): 2836-2841.
doi:10.1128/AAC.44.10.2836-2841.2000.
Cole, K.A., Ziegler, J., Evans, C.A.
& Wright, D.W. 2000. Metalloporphyrins inhibit β-hematin (hemozoin)
formation. Journal of Inorganic Biochemistry 78(2): 109-115.
https://doi.org/10.1016/S0162-0134(99)00216-0.
Dar, O., Khan, M.S. & Adagu, I.
2008. The potential use of methotrexate in the treatment of falciparum malaria: in vitro assays against sensitive and multidrug-resistant Falciparum strains. Japanese Journal of Infectious Diseases 61(3): 210-211.
Dive, D. & Biot, C. 2008. Ferrocene
conjugates of chloroquine and other antimalarials: The development of
ferroquine, a new antimalarial. ChemMedChem 3(3): 383-391.
doi:10.1002/cmdc.200700127.
Dolabela, M., Oliveira, S.,
Nascimento, J., Peres, J., Wagner, H., Póvoa, M. & De Oliveira, A. 2008. In
vitro antiplasmodial activity of extract and constituents from Esenbeckia
febrifuga, a plant traditionally used to treat malaria in the Brazilian
Amazon. Phytomedicine: International Journal of Phytotherapy and
Phytopharmacology 15: 367-372. doi:10.1016/j.phymed.2008.02.001.
Fairhurst, R.M. & Dondorp, A.M.
2016. Artemisinin-resistant Plasmodium falciparum malaria. Microbiology
Spectrum 4(3): 1-16. doi:10.1128/microbiolspec.EI10-0013-2016.
Filho, A.A., Resende, D.O., Fukui,
M.J., Santos, F.F., Pauletti, P.M., Cunha, W.R., Silva, M.L.A., Gregório,
L.E., Bastos, J.K. & Nanayakkara, N.P.D. 2009. In vitro antileishmanial, antiplasmodial and cytotoxic activities of
phenolics and triterpenoids from Baccharis dracunculifolia D.C.
(Asteraceae). Fitoterapia 80: 478-482. doi:10.1016/j.fitote.2009.06.007.
Hamed, K. & Stricker, K. 2016.
Tackling the problems associated with antimalarial medicines of poor quality. Current
Topics in Malaria. InTech. doi:10.5772/64671. hlm. 285-303.
Hubin, T.J., Amoyaw, P.N.A., Roewe,
K.D., Simpson, N.C., Maples, R.D., Carder Freeman, T.N., Cain, A.N., Le, J.G., Archibald, S.J., Khan,
S.I., Tekwani, B.L. & Faruk Khan, M.O. 2014.
Synthesis and antimalarial activity of metal complexes of cross-bridged
tetraazamacrocyclic ligands. Bioorganic and Medicinal Chemistry 22(13):
3239-3244. doi:10.1016/j.bmc.2014.05.003.
Hussin, N., Lim, Y.A.L., Goh, P.P.,
William, T., Jelip, J. & Mudin, R.N. 2020. Updates on malaria incidence and
profile in Malaysia from 2013 to 2017. Malaria Journal 19(1): 55.
doi:10.1186/s12936-020-3135-x.
Kumar, N., Khan, S.I., Sharma, M.,
Atheaya, H. & Rawat, D.S. 2009. Iodine-catalyzed one-pot synthesis and
antimalarial activity evaluation of symmetrically and asymmetrically
substituted 3,6-diphenyl[1,2,4,5]tetraoxanes. Bioorganic & Medicinal
Chemistry Letters 19(6): 1675-1677.
doi:https://doi.org/10.1016/j.bmcl.2009.01.103.
Lindsey, J.S., Schreiman, I.C., Hsu, H.C., Kearney,
P.C. & Marguerettaz, A.M. 1987. Rothemund and Adler-Longo reactions
revisited: Synthesis of tetraphenylporphyrins under equilibrium conditions. The
Journal of Organic Chemistry 52(5): 827-836. DOI: 10.1021/jo00381a022.
Li, K., Zhang, J., Zhang, J.J.,
Zhang, Z.W., Zhuang, Z.J., Xiao, D., Lin, H.H. & Yu, X.Q. 2008.
Ferrocene-bridging dinuclear cyclen copper(II) complexes as high efficient
artificial nucleases: Design, synthesis and interaction with DNA. Applied
Organometallic Chemistry 22(5): 243-248. doi:10.1002/aoc.1384.
Li, Y. 2012. Qinghaosu (artemisinin):
Chemistry and pharmacology. Acta Pharmacologica Sinica 33(9): 1141-1146.
doi:10.1038/aps.2012.104.
Mamardashvili, G., Zhdanova, D.,
Mamardashvili, N., Koifman, O. & Dehaen, W. 2017. Catalytic and inhibiting
effect of amino acids on the porphyrin metallation reactions. Journal of
Porphyrins and Phthalocyanines 21: 671-679. doi:10.1142/S1088424617500663.
Mamat, N., Abdullah, H., Hapidin, H.
& Mokhtar, N. 2020. Gallic acid and methyl gallate enhance
antiproliferative effect of cisplatin on cervical cancer (HeLa) cells. Sains
Malaysiana 49: 1107-1114.
doi:10.17576/jsm-2020-4905-15.
Mosmann, T. 1983. Rapid colorimetric
assay for cellular growth and survival: Application to proliferation and
cytotoxicity assays. Journal of Immunological Methods 65(1): 55-63.
doi:https://doi.org/10.1016/0022-1759(83)90303-4.
Navarro, M., Castro, W. & Biot,
C. 2012. Bioorganometallic compounds with antimalarial targets: Inhibiting
hemozoin formation. Organometallics 31(16): 5715-5727.
doi:10.1021/om300296n.
Okebe, J., Bojang, K. &
D’Alessandro, U. 2014. Use of artemisinin and its derivatives for the treatment
of Malaria in children. Pediatric Infectious Disease Journal 33(5):
522-524. doi:10.1097/INF.0000000000000306.
Peter, S. & Aderibigbe, B.A.
2019. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules 24(19). doi:10.3390/molecules24193604.
Radfar, A., Mendez, D., Moneriz, C.,
Linares, M., Marín-García, P., Puyet, A., Diez, A. & Bautista, J.M. 2009.
Synchronous culture of Plasmodium falciparum at high parasitemia levels. Nature Protocols 4: 1899-1915. doi:10.1038/nprot.2009.198.
Sarr, O., Perrotey, S., Fall, I.,
Ennahar, S., Zhao, M., Diop, Y.M., Candolfi, E. & Marchioni, E. 2011. Icacina
senegalensis (Icacinaceae), traditionally used for the treatment of
malaria, inhibits in vitro Plasmodium falciparum growth without host
cell toxicity. Malaria Journal 10: 85. doi:10.1186/1475-2875-10-85.
Sullivan, D.J., Gluzman, I.Y., Russell,
D.G. & Goldberg, D.E. 1996. On the molecular mechanism of chloroquine’s
antimalarial action. Proceedings of the National Academy of Sciences of the
United States of America 93(21): 11865-11870.
Summers, K.L. 2019. A Structural
chemistry perspective on the antimalarial properties of thiosemicarbazone metal
complexes. Mini-Reviews in Medicinal Chemistry 19(7): 569-590.
doi:10.2174/1389557518666181015152657.
Tanamatayarat, P., Sotanaphun, U.
& Poobrasert, O. 2011. Thai plants from Doi Tung: Brine shrimp lethality,
antioxidative activity and combination effect with L-ascorbic acid. Natural
Product Research 26: 919-925. doi:10.1080/14786419.2010.534469.
Yong, A.S.J., Navaratnam, P.,
Kadirvelu, A. & Pillai, N. 2018. Re-emergence of malaria in Malaysia: A
review article. OALib 5(2): 1-16. doi:10.4236/oalib.1104298.
Zakaria, N.H., Hassan, N.I. &
Wai, L.K. 2020. Molecular docking study of the interactions between Plasmodium
falciparum lactate dehydrogenase and 4-aminoquinoline hybrids. Sains
Malaysiana 49(8): 1905-1913. doi:10.17576/jsm-2020-4908-12.
*Corresponding author; email: drizz@ukm.edu.my
|