Sains
Malaysiana 50(10)(2021): 2957-2964
http://doi.org/10.17576/jsm-2021-5010-10
Determination of the Effects of Copper (Cu) and Lead (Pb) Heavy Metals on
Soil Carbon and Nitrogen Mineralization
(Kesan Logam Berat Tembaga (Cu) dan Plumbum (Pb) pada Tanah Pemineralan Karbon dan Nitrogen)
NACİDE
KIZILDAĞ*
Çukurova
University, Central Research Laboratory, 01330, Adana, Turkey
Received:
18 December 2020/Accepted: 18 March 2021
ABSTRACT
Heavy metal (HM)
pollution has become one of the most important environmental problems of the
present day, as a result of the developing industrial activities. Accordingly,
it is important to understand microorganism activities in soil ecosystems that
have been exposed to HMs for a long time. The aim of this study was to show the potential effects of ores on soil
carbon and nitrogen mineralizations which were taken
from copper (Cu) and lead (Pb) mines in Balıkesir-Balya and Kastamonu-Küre districts in Turkey. The carbon
(C) and nitrogen (N) mineralizations were determined
by using the CO2 respiration method (30 days) and the Parnas Wagner method (42 days) under the controlled
laboratory conditions (28 °C, 80% of field capacity), respectively. It was
observed that carbon mineralization decreased depending on the dose increase. 250 mg kg-1 treatment with
Pb was lower than the control and there was a significant difference between
them (P < 0.001). In terms of nitrogen mineralization rate (%), there
was no significant difference among
all treatments. According to the results, Pb affected microorganisms more
negatively; however, the presence of Cu slightly decreased its negative effect.
It is
possible to conclude that carbon mineralization can be indicator for HM
pollution in the soil. However, nitrogen
mineralization was not a determining factor at HM pollution in this study.
Keywords: Carbon
mineralization; heavy metal; nitrogen mineralization; organic matter; soil
pollution
ABSTRAK
Pencemaran logam berat (HM) telah menjadi salah satu masalah persekitaran yang paling penting pada masa kini akibat daripada aktiviti industri yang sedang berkembang. Oleh itu, penting untuk memahami aktiviti mikroorganisma dalam ekosistem tanah yang telah lama terdedah kepada HM. Tujuan kajian ini adalah untuk mendedahkan kemungkinan kesan bijih pada mineral tanah dan
mineral nitrogen yang diambil daripada lombong tembaga (Cu) dan timah (Pb) di daerah Balıkesir-Balya dan Kastamonu-Küre di Turki. Pemineralan karbon (C) dan nitrogen (N) ditentukan dengan menggunakan kaedah respirasi CO2 (30 hari) dan kaedah Parnas Wagner (42 hari) di bawah keadaan makmal terkawal (28 °C, 80% kapasiti medan), masing-masing. Telah diperhatikan bahawa pemineralan karbon menurun bergantung pada peningkatan dos. Rawatan 250 mg kg-1 dengan Pb lebih rendah daripada kawalan dan terdapat perbezaan yang signifikan antara mereka (P <0.001). Daripada segi kadar pemineralan nitrogen (%), tidak ada perbezaan yang signifikan antara semua rawatan. Menurut hasilnya, Pb mempengaruhi mikroorganisma dengan lebih negatif; namun, kehadiran Cu sedikit mengurangkan kesan negatifnya. Adalah mungkin untuk menyimpulkan bahawa pemineralan karbon dapat menjadi petunjuk untuk pencemaran HM di dalam tanah. Walau bagaimanapun, pemineralan nitrogen bukanlah faktor penentu pencemaran HM dalam kajian ini.
Kata kunci: Bahan organik; logam berat; pemineralan karbon; pemineralan nitrogen; pencemaran tanah
REFERENCES
Aka
Sagliker, H. & Darici, C. 2004. Carbon and
nitrogen mineralization of lead treated soils in the eastern mediterranean
region, Turkey. Soil and Sediment
Contamination: An International Journal 13(3): 255-265.
Ali, H.,
Khan, E. & Sajad, M.A. 2013. Phytoremediation
of heavy metals - Concepts and applications. Chemosphere 91: 869-881.
Alvarez, A.,
Saez, J.M., Davila Costa, J.S., Colin, V.L., Fuentes, M.S., Cuozzo, S.A.,
Benimeli, C.S., Polti, M.A. & Amoroso, M.J. 2017. Actinobacteria:
Current research and perspectives for bioremediation of pesticides and heavy
metals. Chemosphere 166: 41-62.
Askari,
M.S., Alamdari, P., Chahardoli, S. & Afshari, A.
2020. Quantification of heavy metal pollution for environmental assessment of
soil condition. Environmental Monitoring
and Assessment 192: 162.
Bouyoucos,
G.S. 1951. A recalibration of the hydrometer for making mechanical analysis of
soil. Agronomy Journal 43: 434-438.
Benlot, C.
1977. Recherches sur les activites biochimiques dans les successions de sols
derives de cendres volcaniques sous climat tropical humide (Zaire- Indonesie).
ENS Lab., De Zoologie, Paris. pp. 73-76.
Cela, S. & Sumner, M.E. 2002. Critical concentrations of copper,
nickel, lead, and cadmium in soils based on nitrification. Communications in Soil Science and Plant Analysis 33: 19-30.
Dai, J., Becquer, T., Rouiller, J.H., Reversat, G.,
Bernhard-Reversat, F. & Lavelle, P. 2004. Influence of heavy metals on C and N
mineralization and microbial biomass in Zn, Pb, Cu, and Cd contaminated soils. Applied Soil Ecology 25: 99-109.
Demiralay, I. 1993. Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi
Yayınları 143: 6-51.
Duchaufour, P. 1970. Precis de Pedologie. Masson et
Cie.
Fernandes, R.B.A., Luz, W.V., Fontes, M.P.F. & Fontes, L.E.F. 2007. Avaliação da concentração de metais pesados em áreas olerícolas no Estado de Minas Gerais. Revista Brasileira de
Engenharia Agrícola e Ambiental-Agriambi 11: 81-93.
Fernández, S., Cotos-Yáñez, T., Roca-Pardiñas, J. & Ordóñez, C. 2018. Geographically weighted principal
components analysis to assess diffuse pollution sources of soil heavy metal:
Application to rough mountain areas in Northwest Spain. Geoderma 311: 120-129.
Festa, R.A. & Thiele,
D.J. 2011. Copper: An essential metal in biology. Current Biology 21: 877-883.
Friedlova, M. 2010. The influence of heavy metals on
soil biological and chemical properties. Soil
and Water Research 5(1): 21-27.
Gökçeoğlu, M. 1979. Bazı bitki
organlarındaki azot, fosfor ve potasyumun bir vejetasyon periyodundaki
değişimi. Doğa Tarım
ve Ormancılık 3: 192-199.
Hashem, M.A., Nur-A-Tomal, M.S., Mondal, N.R. & Rahman, M.A. 2017. Hair burning and liming in
tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron. Environmental Chemistry Letters 15:
501-506.
Jackson, M.L. 1958. Soil Chemical Analysis.
Eaglewood Cliffs: Prentice-Hall, Inc.
Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B.,
Bibi, I. & Dumat, C. 2017. A comparison of
technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration 182:
247-268.
Kizildag,
N., Aka Sagliker, H. & Darici, C. 2017. The comparative
evaluation of carbon mineralization in soils contaminated and uncontaminated
with chromium. Sains Malaysiana 46(10):
1757-1762.
Kleinbaum, D.G., Kupper, L.L., Muller, K.E. & Nizam, A. 1998. Applied Regression Analysis and Other Multivariable
Methods. Pacific
Grove, CA: Duxbury Press.
Kosolapov,
D.B., Kuschk, P., Vainshtein, M.B., Vatsourina, A.V., Wiebner, A., Kasterner,
M. & Miler, R.A. 2004. Microbial
processes of heavy metal removal from carbon deficient effluents in constructed
wetlands. Engineering in Life Sciences 4(5):
403-411.
Lemée, G.
1967. Investigation sur la mineralisation de l’azote et son evolution annuelle
dans des humus forestiers in situ. Oecologia 2: 285-324.
Liao, M.,
Luo, Y.K., Zhao, X.M. & Huang, C.Y. 2005. Toxicity of
cadmium to soil microbial biomass and its activity: effect of incubation time
on Cd ecological dose in a paddy soil. Journal
of Zhejiang University-Science B 6(5): 324-330.
Liu, Y.,
Xue, C., Yu, S. & Li, F. 2019. Variations of
abundance and community structure of ammonia oxidizers and nitrification
activity in two paddy soils polluted by heavy metals. Geomicrobiology Journal 36: 1-10.
Mikanova, O.
2006. Effect of heavy metals on some soil biological parameters. Journal of Geochemical Exploration 88:
220-223.
Minnich,
M.M. & McBride, M.B. 1986. Effects of
copper activity on carbon and nitrogen mineralisation in field-aged
copper-enriched soils. Plant and Soil 91:
231-240.
Minnikova,
T.V., Denisova, T.V., Mandzhieva, S.S., Kolesnikov, S.I., Minkina, T.M.,
Chaplygin, V.A., Burachevskaya, M.V., Sushkova, S.N. & Bauer, T.V. 2017. Assessing the effect of heavy
metals from the Novocherkassk power station emissions on the biological
activity of soils in the adjacent areas. Journal
of Geochemical Exploration 174: 70-78.
Nwuche, C.O. & Ugoji, E.O. 2008. Effects of heavy
metal pollution on the soil microbial activity. International Journal of Environmental Science and Technology 5:
409-414.
Rajapaksha,
R., Tobor-Kapton, M.A. & Baath, E. 2004. Metal toxicity
affects fungal and bacterial activities in soil differently. Applied and Environmental Microbiology 70:
2966-2973.
Rother,
J.A., Nillbank, J.W. & Thonton, I. 1982. Effects of heavy
metal addition on ammonification and nitrification in soil contaminated with
cadmium, lead and zinc. Plant and Soil 69:
239-258.
Schaefer, R.
1967. Caracteres et evolution des activites microbiennes dans une chaine de
sols hydromorphes mesotrophiques de la plaine d’alsace première partie: Cadre
géographique et milieu édaphique.
Shahid, M.,
Dumat, C., Silvestre, J. & Pinelli, E. 2012. Effect of fulvic
acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biology
and Fertility of Soils 48: 689-697.
Shi, W. & Ma, X. 2017. Effects of heavy metal Cd
pollution on microbial activities in soil. Annals
of Agricultural and Environmental Medicine 24(4): 722-725.
Song, J.,
Shen, Q., Wang, L., Qiu, G., Shi, J., Xu, J., Brookes, B.C. & Liu, X. 2018. Effects of Cd, Cu, Zn and their
combined action on microbial biomass and bacterial community structure. Environmental Pollution 243: 510-518.
Stuczynski,
T.I., McCarty, G.W. & Siebielec, G. 2003. Response of soil
microbiological activities to cadmium, lead, and zinc salt amendments. Journal of Environmental Quality 32:
1346-1355.
Tang, J.,
Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., Luo, L., Yang, Y., Huang,
H. & Chen, A. 2020. Physicochemical
features, metal availability and enzyme activity in heavy metal-polluted soil
remediated by biochar and compost. Science
of The Total Environment 701: 134751.
Vasquez-Murrieta,
M.S., Migules-Garduno, I., Franco-Hernandez, O., Govaerts, B. & Dendooven, L. 2006. C and N mineralization and
microbial biomass in heavy-metal contaminated soil. European Journal of Soil Biology 42: 89-98.
Yao, H., Xu,
J. & Huang, C. 2003. Substrate
utilization pattern, biomass and activity of microbial communities in a
sequence of heavy metal-polluted paddy soils. Geoderma 115: 139-148.
Walpola, B. & Yoon, M.H. 2012. Concentration dependent effect of
heavy metals on soil carbon mineralization. Korean
Journal of Soil Science and Fertilizer 45(4): 551-554.
Zhang, F.P.,
Li, C.F., Tong, L.G., Yue, L.X., Li, P., Ciren, Y.J. & Cao, C.G. 2010. Response of microbial characteristics
to heavy metal pollution of mining soils in Central Tibet. China. Applied Soil Ecology 45: 144-151.
*Corresponding author; email: nkizildag@cu.edu.tr
|