Sains Malaysiana 50(10)(2021):
2977-2991
http://doi.org/10.17576/jsm-2021-5010-12
Sugar Recovery from Bakery Leftovers through
Enzymatic Hydrolysis: Effect of Process Conditions and Product Characterization
(Perolehan Kembali Gula daripada Lebihan
Bakeri melalui Hidrolisis Berenzim: Kesan Keadaan Proses dan Pencirian Produk)
NURFATIMAH MOHD THANI1, SITI MAZLINA
MUSTAPA KAMAL1*, FARAH SALEENA TAIP1, ALIFDALINO SULAIMAN1 & ROZITA OMAR2
1Department
of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department
of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received:
16 November 2020/Accepted: 5 February 2021
ABSTRACT
This study evaluates the process conditions, (enzyme concentration (120-1200 U/g substrate),
temperature (30-60 °C), and pH (3-9)) of
enzymatic hydrolysis (EH) for sugar recovery from leftover croissants (LC) and
leftover doughnut (LD), and characterizing its residue and hydrolysate. The
highest sugar yield recovered from LC was 574.21 ± 0.74 mg/g (840 U/g
substrate, 49 °C and pH 3) and for LD was 460.53 ± 0.74 mg/g (1176 U/g
substrate, 47 °C and pH 3). The highest fructose and glucose yield for LC and
LD were 14.47±0.73 mg/g and 11.84±0.21 mg/g, and 13.26±0.63 mg/g and
10.34±0.11 mg/g, respectively. Morphology
analysis (SEM) showed that the structure of LC and LD had changes in its starch
granules that indicates hydrolysis process occurrence. The presence of
monosaccharides and oligosaccharides were detected from FTIR. HMF was also detected from sugar degradation
due to EH, (0.043 ± 0.0334 mg/g for LC) and (0.023 ± 0.0124 mg/g for LD).
Keywords: Bakery leftovers; enzyme hydrolysis; glucose; hydroxymethylfurfural; sugar
ABSTRAK
Kajian ini menilai keadaan proses (enzim (120-1200 U/g substrat), suhu (30-60 °C) dan pH (3-9)) hidrolisis berenzim untuk perolehan kembali gula daripada sisa kroisan dan sisa donat dan mencirikan hampas dan hidrolisatnya. Hasil gula tertinggi yang diperoleh daripada sisakroisan adalah 574.21 ± 0.74 mg/g
(840 U/g substrat, 49 °C dan pH 3) dan untuk LD adalah 460.53 ± 0.74
mg/g (1176 U/g substrat, 47 °C dan pH 3). Hasil fruktosa dan glukosa tertinggi untuk sisa kroisan dan sisa donat masing-masing adalah 14.47±0.73 mg/g
dan 11.84±0.21 mg/g dan 13.26±0.63 mg/g dan 10.34±0.11 mg/g. Analisis morfologi (SEM)
menunjukkan bahawa struktur sisa kroisan and sisa donat
mempunyai perubahan pada butiran kanji yang menunjukkan berlakunya proses
hidrolisis. Kehadiran monosakarida dan oligosakarida telah dikesan daripada
FTIR. HMF juga telah dikesan daripada kemerosotan gula yang disebabkan oleh
hidrolisis berenzim (0.043
± 0.0334 mg/g untuk sisa kroisan) dan (0.023 ± 0.0124
mg/g untuk sisa donat).
Kata kunci: Glukosa; gula; hidroksimetilfurfural; hidrolisis berenzim; sisa roti
REFERENCES
Akpinar, O., Erdogan, K., Bakir, U.
& Yilmaz, L. 2009. Enzymatic production of xylooligosaccharide from
selected agricultural wastes. Food and Bioproducts Processing 87(2):
145-151.
Amezcua-Allieri, M., Duran, T. &
Aburto, J. 2017. Study of chemical and enzymatic hydrolysis of cellulosic
materials to obtain fermentable sugars. Journal of Chemistry 2017:
5680105.
Anjos, O., Campos, M., Ruiz, P. & Antunes, P.
2015. Application of FTIR-ATR spectroscopy to the quantification of sugar in
honey. Food Chemistry 169: 218-223.
Azmi,
A.S., Malek, M.I.A. & Puad, N.I.M. 2017. A review
on acid and enzymatic hydrolyses of sago starch. International Food Research Journal 24(suppl): 265-273.
Bogdanov,
S. 2009. Harmonised methods of the International
Honey Commission. International Honey Commission.
Demirci, A., Palabiyik, I., Gumus, T.
& Ozalp, S. 2017. Waste bread as a biomass source: Optimization on
enzymatic hydrolysis and relation between rheological behaviour and glucose
yield. Waste Biomass Valor. 8: 775-782.
Fazil, F., Azzimi, N. & Zubairi,
S. 2018. Response surface optimization on the total phenolic content and
antioxidant activities of Sabah Snake Grass (Clinacanthus nutans) leaves
and Peleg kinetic modelling extract. International Food Research Journal 25(Suppl.1):
S105-S115.
FAO. 2013. Food Loss
and Waste: Definition and Scope.
Ge, Q., Zhang, A. & Sun, P. 2009.
Structural investigation of a novel water-soluble heteropolysaccharide from the
fruiting bodies of Phellinus baumii Pilat. Food Chemistry 114:
391-395.
Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R.
& Meybeck, A. 2011. Global Food Losses and
Food Waste. Rome: Food and
Agriculture Organization of the United Nations.
Han,
W., Yan, Y., Shi, Y., Gu, J., Tang, J. & Zhao, H. 2016. Biohydrogen
production from enzymatic hydrolysis of food waste in batch and continuous
systems. Scientific Reports 6: 38395.
Hesso, N., Garnier, C., Loisel, C., Chevallier,
S., Bouchet, B. & Le-Bail, A. 2015. Formulation
effect study on batter and cake microstructure: Correlation with rheology and
texture. Food Structure 5: 31-41.
Hozová, B., Turicova, R. & Lenkeyova, I. 2002. Microbiological and sensory quality and
stored croissant-type bakery products depending on external (sorbic acid) and
internal (dough, aw value) conditions. Nahrung 46(3): 144-150.
Huang, Z. & Zhang, L. 2009.
Chemical structure of water-soluble polysaccharides from Rhizoma Panacis
Japonici. Carbohydrate Resources 344: 1136-1140.
Hudečková, H., Supinova, P.
& Babak, L. 2017. Optimization of enzymatic hydrolysis of wwaste bread
before fermentation. Acta Universitatis Agriculturae Et Silviculturae
Mendelianae Brunensis 65: 35-40.
Keeratiburana, T., Hansen, A.R., Soontaranon, S., Blennow, A.
& Tongta, S. 2020. Porous high amylose rice
starch modified by amyloglucosidase and maltogenic
α-amylase. Carbohydrate Polymers 230: 115611.
Khanna,
P. 2010. Cell and Molecular Biology. New Delhi: I.K. International
Publishing House.
Ma,
M., Xu, Z., Li, P., Sui, Z. & Corke, H. 2020.
Removal of starch granule-associated proteins affects amyloglucosidase hydrolysis of rice starch granules. Carbohydrate
Polymers 247: 116674.
Mahfuzul Islam, S., Loman, A. &
Ju, L.K. 2018. High monomeric sugar yields from enzymatic hydrolysis of soybean
meal and effects of mild heat pretreatments with chelators. Bioresource
Technology 256: 438-445.
Mohd Thani, N., Mustapa Kamal, S.,
Taip, F., Sulaiman, A., Omar, R. & Siajam, S.I. 2020a. Hydrolysis and
characterization of sugar recovery from bakery waste under optimized
subcritical water conditions. Journal of Food Science and Technology https://doi.org/10.1007/s13197-020-04345-1.
Mohd Thani, N., Mustapa Kamal,
S.M., Taip, F.S., Sulaiman,
A. & Omar, R. 2020b. Consumers’ delayed consumption of bakery products:
Effect on physical and chemical properties. Journal
of Agricultural and Food Engineering 2(2020): 0013. http://doi.org/10.37865/jafe.2020.0013.
Mohd Thani, N., Mustapa Kamal, S.,
Taip, F., Sulaiman, A. & Omar, R. 2019. Effect of enzyme concentration on
total reducing sugar from leftover croissants and doughnuts via enzymatic
hydrolysis. Food Research 3(4): 313-316.
Morais, A. & Rodrigues, M. 2018.
Optimization and consumer acceptability of carob powder as cocoa substitute in
lactose-free cashew nut almonds-based beverage. International Food Research
Journal 25(6): 2268-2274.
Moult, J., Allan, S., Hewitt, C.
& Berners-Lee, M. 2018. Greenhouse gas emissions of food waste disposal
options for UK retailers. Food Policy 77: 50-58.
Nielsen, S. 2010. Phenol-sulfuric
acid method for total carbohydrates. In Food Science Texts Series, edited by Nielsen, S. New York: Springer. pp. 47-53.
Pietrzak, W. & Kawa-Rygielska,
J. 2015. Simultaneous saccharification and ethanol fermentation of waste
wheat-rye bread at very high solids loading: Effect of enzymatic liquefaction
conditions. Fuel 147: 236-242.
Posridee, K., Oonsivilai, A. &
Oonsivilai, R. 2018. Optimization of sweet cassava (Manihot esculents
crantz.) crude extract with high maltodextrin level using response surface
methodology. International Food Research Journal 25(Suppl.1): S51-S56.
Rasli, H. & Sarbon, N. 2018.
Optimization of enzymatic hydrolysis conditions and characterization of
Shortfin scad (Decapterus macrosoma) skin gelatin hydrolysate using
response surface methodology. International Food Research Journal 25(4):
1541-1549.
Rojas, J., Rosell, C., Benedito,
d.B., Perez-Munuera, I. & Lluch, M. 2000. The baking process of wheat rolls
followed by cryo scanning electron microscopy. European Food Research and
Technology 212(1): 57-63.
Sánchez, Ó. & Cardona, C. 2008.
Trends in biotechnological production of fuel ethanol from different
feedstocks. Bioresource Technology 99: 5270-5295.
Ventour, L. 2008. WRAP Food Waste
Report v2: The Food We Waste. Britain.: WRAP.
Wang, W., Kang, L., Wei, H., Arora,
R. & Lee, Y. 2011. Study on the decreased sugar yield in enzymatic
hydrolysis of cellulosic substrate at high solid loading. Applied
Biochemistry and Biotechnology 164(7): 1139-1149.
Wasswa, J., Tang, J. & Gu, X.
2007. Optimimization of the production of hydrolysates from grass carp (Ctenopharyngodon
idella) skin using alcalase. Food Biochemistry 32: 460-473.
Xu, X., Chen, P., Wang, Y. &
Zhang, L. 2009. Chain conformation and rheological behaviour of an
extracellular heteropolysaccharide Erwinia gum in aqueous solution. Carbohydrate
Resources 344: 113-119.
*Corresponding author;
email: smazlina@upm.edu.my
|