Sains Malaysiana 50(10)(2021): 2977-2991

http://doi.org/10.17576/jsm-2021-5010-12

 

Sugar Recovery from Bakery Leftovers through Enzymatic Hydrolysis: Effect of Process Conditions and Product Characterization

(Perolehan Kembali Gula daripada Lebihan Bakeri melalui Hidrolisis Berenzim: Kesan Keadaan Proses dan Pencirian Produk)

 

NURFATIMAH MOHD THANI1, SITI MAZLINA MUSTAPA KAMAL1*, FARAH SALEENA TAIP1, ALIFDALINO SULAIMAN1 & ROZITA OMAR2

 

1Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 16 November 2020/Accepted: 5 February 2021

 

ABSTRACT

This study evaluates the process conditions, (enzyme concentration (120-1200 U/g substrate), temperature (30-60 °C), and pH (3-9)) of enzymatic hydrolysis (EH) for sugar recovery from leftover croissants (LC) and leftover doughnut (LD), and characterizing its residue and hydrolysate. The highest sugar yield recovered from LC was 574.21 ± 0.74 mg/g (840 U/g substrate, 49 °C and pH 3) and for LD was 460.53 ± 0.74 mg/g (1176 U/g substrate, 47 °C and pH 3). The highest fructose and glucose yield for LC and LD were 14.47±0.73 mg/g and 11.84±0.21 mg/g, and 13.26±0.63 mg/g and 10.34±0.11 mg/g, respectively. Morphology analysis (SEM) showed that the structure of LC and LD had changes in its starch granules that indicates hydrolysis process occurrence. The presence of monosaccharides and oligosaccharides were detected from FTIR. HMF was also detected from sugar degradation due to EH, (0.043 ± 0.0334 mg/g for LC) and (0.023 ± 0.0124 mg/g for LD).

 

Keywords:  Bakery leftovers; enzyme hydrolysis; glucose; hydroxymethylfurfural; sugar

 

ABSTRAK

Kajian ini menilai keadaan proses (enzim (120-1200 U/g substrat), suhu (30-60 °C) dan pH (3-9)) hidrolisis berenzim untuk perolehan kembali gula daripada sisa kroisan dan sisa donat dan mencirikan hampas dan hidrolisatnya. Hasil gula tertinggi yang diperoleh daripada sisakroisan adalah 574.21 ± 0.74 mg/g (840 U/g substrat, 49 °C dan pH 3) dan untuk LD adalah 460.53 ± 0.74 mg/g (1176 U/g substrat, 47 °C dan pH 3). Hasil fruktosa dan glukosa tertinggi untuk sisa kroisan dan sisa donat masing-masing adalah 14.47±0.73 mg/g dan 11.84±0.21 mg/g dan 13.26±0.63 mg/g  dan 10.34±0.11 mg/g. Analisis morfologi (SEM) menunjukkan bahawa struktur sisa kroisan and sisa donat mempunyai perubahan pada butiran kanji yang menunjukkan berlakunya proses hidrolisis. Kehadiran monosakarida dan oligosakarida telah dikesan daripada FTIR. HMF juga telah dikesan daripada kemerosotan gula yang disebabkan oleh hidrolisis berenzim (0.043 ± 0.0334 mg/g untuk sisa kroisan) dan (0.023 ± 0.0124 mg/g untuk sisa donat).

 

Kata kunci: Glukosa; gula; hidroksimetilfurfural; hidrolisis berenzim; sisa roti

 

REFERENCES

Akpinar, O., Erdogan, K., Bakir, U. & Yilmaz, L. 2009. Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food and Bioproducts Processing 87(2): 145-151.

Amezcua-Allieri, M., Duran, T. & Aburto, J. 2017. Study of chemical and enzymatic hydrolysis of cellulosic materials to obtain fermentable sugars. Journal of Chemistry 2017: 5680105.

Anjos, O., Campos, M., Ruiz, P. & Antunes, P. 2015. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry 169: 218-223.

Azmi, A.S., Malek, M.I.A. & Puad, N.I.M. 2017. A review on acid and enzymatic hydrolyses of sago starch. International Food Research Journal 24(suppl): 265-273.

Bogdanov, S. 2009. Harmonised methods of the International Honey Commission. International Honey Commission.

Demirci, A., Palabiyik, I., Gumus, T. & Ozalp, S. 2017. Waste bread as a biomass source: Optimization on enzymatic hydrolysis and relation between rheological behaviour and glucose yield. Waste Biomass Valor. 8: 775-782.

Fazil, F., Azzimi, N. & Zubairi, S. 2018. Response surface optimization on the total phenolic content and antioxidant activities of Sabah Snake Grass (Clinacanthus nutans) leaves and Peleg kinetic modelling extract. International Food Research Journal 25(Suppl.1): S105-S115.

FAO. 2013. Food Loss and Waste: Definition and Scope.

Ge, Q., Zhang, A. & Sun, P. 2009. Structural investigation of a novel water-soluble heteropolysaccharide from the fruiting bodies of Phellinus baumii Pilat. Food Chemistry 114: 391-395.

Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. 2011. Global Food Losses and Food Waste. Rome: Food and Agriculture Organization of the United Nations.

Han, W., Yan, Y., Shi, Y., Gu, J., Tang, J. & Zhao, H. 2016. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems. Scientific Reports 6: 38395.

Hesso, N., Garnier, C., Loisel, C., Chevallier, S., Bouchet, B. & Le-Bail, A. 2015. Formulation effect study on batter and cake microstructure: Correlation with rheology and texture. Food Structure 5: 31-41.

Hozová, B., Turicova, R. & Lenkeyova, I. 2002. Microbiological and sensory quality and stored croissant-type bakery products depending on external (sorbic acid) and internal (dough, aw value) conditions. Nahrung 46(3): 144-150.

Huang, Z. & Zhang, L. 2009. Chemical structure of water-soluble polysaccharides from Rhizoma Panacis Japonici. Carbohydrate Resources 344: 1136-1140.

Hudečková, H., Supinova, P. & Babak, L. 2017. Optimization of enzymatic hydrolysis of wwaste bread before fermentation. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis 65: 35-40.

Keeratiburana, T., Hansen, A.R., Soontaranon, S., Blennow, A. & Tongta, S. 2020. Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase. Carbohydrate Polymers 230: 115611.

Khanna, P. 2010. Cell and Molecular Biology. New Delhi: I.K. International Publishing House.

Ma, M., Xu, Z., Li, P., Sui, Z. & Corke, H. 2020. Removal of starch granule-associated proteins affects amyloglucosidase hydrolysis of rice starch granules. Carbohydrate Polymers 247: 116674.

Mahfuzul Islam, S., Loman, A. & Ju, L.K. 2018. High monomeric sugar yields from enzymatic hydrolysis of soybean meal and effects of mild heat pretreatments with chelators. Bioresource Technology 256: 438-445.

Mohd Thani, N., Mustapa Kamal, S., Taip, F., Sulaiman, A., Omar, R. & Siajam, S.I. 2020a. Hydrolysis and characterization of sugar recovery from bakery waste under optimized subcritical water conditions. Journal of Food Science and Technology https://doi.org/10.1007/s13197-020-04345-1.

Mohd Thani, N., Mustapa Kamal, S.M., Taip, F.S., Sulaiman, A. & Omar, R. 2020b. Consumers’ delayed consumption of bakery products: Effect on physical and chemical properties. Journal of Agricultural and Food Engineering 2(2020): 0013.  http://doi.org/10.37865/jafe.2020.0013.

Mohd Thani, N., Mustapa Kamal, S., Taip, F., Sulaiman, A. & Omar, R. 2019. Effect of enzyme concentration on total reducing sugar from leftover croissants and doughnuts via enzymatic hydrolysis. Food Research 3(4): 313-316.

Morais, A. & Rodrigues, M. 2018. Optimization and consumer acceptability of carob powder as cocoa substitute in lactose-free cashew nut almonds-based beverage. International Food Research Journal 25(6): 2268-2274.

Moult, J., Allan, S., Hewitt, C. & Berners-Lee, M. 2018. Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy 77: 50-58.

Nielsen, S. 2010. Phenol-sulfuric acid method for total carbohydrates. In Food Science Texts Series, edited by Nielsen, S. New York: Springer. pp. 47-53.

Pietrzak, W. & Kawa-Rygielska, J. 2015. Simultaneous saccharification and ethanol fermentation of waste wheat-rye bread at very high solids loading: Effect of enzymatic liquefaction conditions. Fuel 147: 236-242.

Posridee, K., Oonsivilai, A. & Oonsivilai, R. 2018. Optimization of sweet cassava (Manihot esculents crantz.) crude extract with high maltodextrin level using response surface methodology. International Food Research Journal 25(Suppl.1): S51-S56.

Rasli, H. & Sarbon, N. 2018. Optimization of enzymatic hydrolysis conditions and characterization of Shortfin scad (Decapterus macrosoma) skin gelatin hydrolysate using response surface methodology. International Food Research Journal 25(4): 1541-1549.

Rojas, J., Rosell, C., Benedito, d.B., Perez-Munuera, I. & Lluch, M. 2000. The baking process of wheat rolls followed by cryo scanning electron microscopy. European Food Research and Technology 212(1): 57-63.

Sánchez, Ó. & Cardona, C. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99: 5270-5295.

Ventour, L. 2008. WRAP Food Waste Report v2: The Food We Waste. Britain.: WRAP.

Wang, W., Kang, L., Wei, H., Arora, R. & Lee, Y. 2011. Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Applied Biochemistry and Biotechnology 164(7): 1139-1149.

Wasswa, J., Tang, J. & Gu, X. 2007. Optimimization of the production of hydrolysates from grass carp (Ctenopharyngodon idella) skin using alcalase. Food Biochemistry 32: 460-473.

Xu, X., Chen, P., Wang, Y. & Zhang, L. 2009. Chain conformation and rheological behaviour of an extracellular heteropolysaccharide Erwinia gum in aqueous solution. Carbohydrate Resources 344: 113-119.

 

*Corresponding author; email: smazlina@upm.edu.my

   

 

 

previous