Sains Malaysiana 50(10)(2021): 3015-3033
http://doi.org/10.17576/jsm-2021-5010-15
Pichia-Expressed
Recombinant D6 and DARC Negatively Affect Cell Migration and Invasion of Breast
Cancer Cells
(Rekombinan D6 dan DARC Hasilan Pichia Mempengaruhi Migrasi Sel dan
Serangan Sel Kanser Payudara secara Negatif)
TAN
WEE YEE, KHOO BOON YIN & CHEW AI LAN*
Institute for Research in Molecular Medicine
(INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Received: 6 August 2020/Accepted: 19 February 2021
ABSTRACT
Atypical chemokine
receptor proteins are termed ‘decoy proteins’ as their binding to the
respective ligands does not lead to a typical signaling pathway but intercepts
the action of chemokines. This method of chemokine activity regulation may also
function in tumor suppression. D6 and DARC (Duffy Antigen Receptor for
Chemokines) have been reported as decoy chemokine receptors in cancer studies.
Purified Pichia-expressed
D6 and DARC, produced in-house, were used in cell-based studies to test their
biological activities. Cell viability tests showed that recombinant D6 and DARC
did not affect cell viability significantly, suggesting that they were not
involved in breast cancer cell death. Wound healing assays showed that the
presence of recombinant D6 or DARC at 10 µg/mL optimally inhibited the
migration of breast cancer cells. ELISA showed an inverse relationship between
the recombinant proteins and CCL2 levels in the treated cells. Migration assay
using Boyden chamber demonstrated the function of the recombinant proteins in
inhibiting chemotaxis activity of treated cells. Invasion assay showed the
ability of the recombinant proteins in inhibiting the invasion property of
treated cells. Comparison of single and combinatorial effects of the recombinant
proteins showed that the combination of D6 and DARC at a 1:1 ratio (10 µg/mL)
is most effective in reducing CCL2 levels and inhibiting the migration and
invasion of treated cells. It was shown that the purified Pichia-expressed
recombinant D6 and DARC are the negative regulators of breast cancer cell
migration and invasion, and the inhibition effects were greater when they were
used in combination.
Keywords: Breast cancer
cells; CCL2; cell migration and invasion; D6; DARC
ABSTRAK
Protein reseptor kemokin atipikal disebut ‘umpan protein’ kerana pengikatannya dengan ligan masing-masing tidak membawa kepada jalan isyarat yang khas tetapi memintas tindakan kemokin. Ia merupakan satu kawalan aktiviti kemokin dan boleh berfungsi dalam penyekatan tumor. D6 dan DARC telah dilaporkan sebagai reseptor kemokin umpan dalam kajian kanser. D6 dan DARC ekspresi Pichia yang dihasilkan di makmal telah digunakan dalam kajian berdasarkan sel untuk menguji aktiviti biologinya. Ujian daya hidup sel menunjukkan bahawa rekombinan D6 dan DARC tidak mempengaruhi daya maju sel secara signifikan, menunjukkan bahawa mereka tidak terlibat dalam kematian sel barah payudara. Ujian penyembuhan luka menunjukkan bahawa kehadiran D6 atau DARC rekombinan pada 10 µg/mL menghalang penghijrahan sel barah payudara secara optimum. ELISA menunjukkan hubungan terbalik antara protein rekombinan dan tahap CCL2 pada sel yang dirawat. Ujian migrasi menggunakan ruang Boyden menunjukkan fungsi protein rekombinan dalam menghalang aktiviti kemotaksis sel yang dirawat. Ujian penaklukan menunjukkan kemampuan protein rekombinan dalam merencat sifat penaklukan sel yang dirawat. Membandingkan kesan tunggal dan gabungan protein rekombinan, gabungan D6 dan DARC pada nisbah 1: 1 (10 µg/mL) didapati paling baik dalam mengurangkan tahap CCL2 dan seterusnya menghalang migrasi dan penaklukan sel yang dirawat. Hasil kajian menunjukkan bahawa rekombinan D6 dan DARC hasilanPichia bukan hanya pengawal negatif migrasi dan penaklukan sel barah payudara tetapi kesan perencatannya lebih besar ketika digunakan dalam gabungan.
Kata kunci: CCL2; D6; DARC; migrasi dan penaklukan sel; sel payudara
REFERENCES
Ahmad,
F.K., Deris, S. & Abdullah, M.S. 2011. Synergy
network based inference for breast cancer metastasis. Procedia Computer Science 3: 1094-1100.
Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J.,
Huang, H., Porter, D., Hu, M., Chin, L., Richardson, A., Schnitt,
S., Sellers, W.R. & Polyak, K. 2004. Molecular
characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1): 17-32.
Ben-Baruch,
A. 2008. Organ selectivity in metastasis: Regulation by chemokines and their
receptors. Clinical & Experimental Metastasis 25(4): 345-356.
Bray,
F., Ferlay, J., Soerjomataram,
I., Siegel, R.L., Torre, L.A. & Jemal, A. 2018. Global cancer statistics
2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA: A Cancer Journal for Clinicians 68(6): 394-424.
Cabioglu, N., Sahin, A.A., Morandi, P., Meric-Bernstam, F., Islam, R., Lin, H.Y., Bucana, C.D., Gonzalez-Angulo, A.M., Hortobagyi,
G.N. & Cristofanilli, M. 2009. Chemokine
receptors in advanced breast cancer: Differential expression in metastatic disease
sites with diagnostic and therapeutic implications. Annals of Oncology 20(6): 1013-1019.
Cabioglu, N., Yazici, M.S., Arun, B., Broglio,
K.R., Hortobagyi, G.N., Price, J.E. & Sahin, A. 2005. CCR7 and CXCR4 as novel biomarkers
predicting axillary lymph node metastasis in T1 breast cancer. Clinical Cancer Research 11(16):
5686-5693.
Chen,
L., Zhang, S., Shen, Y., Qi, L., Zhang, Z., Tian, H. & Zou, Z. 2020.
Thymus‑expressed chemokine secreted by breast cancer cells promotes
metastasis and inhibits apoptosis. Oncology Reports 43: 1875-188.
Dhawan,
P. & Richmond, A. 2002. Role of CXCL1 in tumorigenesis of melanoma. Journal of Leukocyte Biology 72(1):
9-18.
Fang,
W.B., Jokar, I., Zou, A., Lambert, D., Dendukuri, P. & Cheng, N. 2012. CCL2/CCR2 chemokine
signaling coordinates survival and motility of breast cancer cells through
Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent
mechanisms. Journal of Biological
Chemistry 287(43): 36593-36608.
Galzi, J.L., Hachet-Haas, M., Bonnet, D., Daubeuf,
F., Lecat, S., Hibert, M., Haiech, J. & Frossard, N.
2010. Neutralizing endogenous chemokines with small molecules: Principles and
potential therapeutic applications. Pharmacology
& Therapeutics 126(1): 39-55.
Gencer, S., van der
Vorst, E., Aslani, M., Weber, C., Döring,
Y. & Duchene, J. 2019. Atypical chemokine receptors in cardiovascular
disease. Thrombosis and Haemostasis 119(4):
534-541.
Grada, A., Otero-Vinas,
M., Prieto-Castrillo, F., Obagi,
Z. & Falanga, V. 2017. Research techniques made
simple: Analysis of collective cell migration using the wound healing assay. The
Journal of Investigative Dermatology 137(2): e11-e16.
Graham,
G.J. 2009. D6 and the atypical chemokine receptor family: Novel regulators of
immune and inflammatory processes. European
Journal of Immunology 39(2): 342-351.
Hansell,
C.A., Hurson, C.E. & Nibbs,
R.J. 2011. DARC and D6: Silent partners in chemokine regulation? Immunology and Cell Biology 89(2):
197-206.
Hansell,
C.A., Simpson, C.V. & Nibbs, R.J. 2006. Chemokine
sequestration by atypical chemokine receptors. Biochemical Society Transactions 34(6): 1009-1013.
Justus,
C.R., Leffler, N., Ruiz-Echevarria, M. & Yang, L.V. 2014. In vitro cell migration and invasion assays. Journal
of Visualized Experiments 88: 51046.
Kramer,
N., Walzl, A., Unger, C., Rosner, M., Krupitza, G., Hengstschlager, M.
& Dolznig, H. 2013. In vitro cell
migration and invasion assays. Mutation
Research 752(1): 10-24.
Lee,
B.C., Song, J., Lee, A., Cho, D. & Kim, T.S. 2020. Erythroid
differentiation regulator 1 promotes wound healing by inducing the production
of C‑C motif chemokine ligand 2 via the activation of MAP kinases in
vitro and in vivo. International Journal of Molecular Medicine 46(6): 2185-2193.
Lokeshwar, B.L., Kallifatidis, G. & Hoy, J.J. 2020. Atypical chemokine
receptors in tumor cell growth and metastasis. Advances in Cancer Research 145: 1-27.
Mantovani, A., Bonecchi, R. & Locati, M.
2006. Tuning inflammation and immunity by chemokine sequestration: Decoys and
more. Nature Reviews Immunology 6(12): 907-918.
Maryam,
M., Samaneh, R., Amin, J., Seyed,
H.A., Hossein, M.O., Tannaz, J. & Amirhossein, S.
2020. Peptide decoys: A new technology offering therapeutic opportunities for
breast cancer. Drug Discovery Today 25(3): 593-598.
Raman,
D., Sobolik-Delmaire, T. & Richmond, A. 2011.
Chemokines in health and disease. Experimental
Cell Research 317(5): 575-589.
Rezaeeyan, H., Shirzad, R.,
McKee, T.D. & Saki, N. 2018. Role of chemokines in metastatic niche: New
insights along with a diagnostic and prognostic approach. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica 126(5): 359-370.
Saçmacı, H.
& Özcan, S. 2020. A critical role for expression
of atypical chemokine receptor 2 in multiple sclerosis: A preliminary project. Multiple
Sclerosis and Related Disorders 38: 101524.
Sandhu,
R., Parker, J.S., Jones, W.D., Livasy, C.A. &
Coleman, W.B. 2010. Microarray-based gene expression profiling for molecular
classification of breast cancer and identification of new targets for therapy. Laboratory Medicine 41(6): 364-372.
Sjöberg, E., Meyrath, M., Milde, L., Herrera,
M., Lövrot, J., Hägerstrand,
D., Frings, O., Bartish, M., Rolny,
C., Sonnhammer, E., Chevigné,
A., Augsten, M. & Östman,
A. 2019. A novel ACKR2-dependent role of fibroblast-derived CXCL14 in
epithelial-to-mesenchymal transition and metastasis of breast cancer. Clinical
Cancer Research: An Official Journal of the American Association for Cancer
Research 25(12): 3702-3717.
Slettenaar, V.I.F. &
Wilson, J.L. 2006. The chemokine network: A target in cancer biology? Advanced Drug Delivery Reviews 58(8):
962-974.
Stone,
M.J., Hayward, J.A., Huang, C., Huma, Z.E. & Sanchez, J. 2017. Mechanisms
of regulation of the chemokine-receptor network. International Journal of Molecular Sciences 18(2): 342.
Tan,
W., Martin, D. & Gutkind, J.S. 2006. The Galpha13-Rho signaling axis is
required for SDF-1-induced migration through CXCR4. Journal of Biological Chemistry 281(51): 39542-39549.
Vacchini, A., Cancellieri, C., Milanesi, S., Badanai, S., Savino, B., Bifari,
F., Locati, M., Bonecchi,
R. & Borroni, E.M. 2020. Control of cytoskeletal
dynamics by β-arrestin1/myosin Vb signaling
regulates endosomal sorting and scavenging activity of the atypical chemokine
receptor ACKR2. Vaccines 8(3): 542.
Valle Oseguera, C.A. & Spencer, J.V. 2017. Human
cytomegalovirus interleukin-10 enhances matrigel invasion of MDA-MB-231 breast cancer cells. Cancer
Cell International 17(1): 24.
Wang,
J., Ou, Z.L., Hou, Y.F., Luo, J.M., Shen, Z.Z., Ding,
J. & Shao, Z.M. 2006. Enhanced expression of Duffy antigen receptor for
chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene 25(54): 7201-7211.
Wilson,
G.J., Fukuoka, A., Love, S.R., Kim, J., Pingen, M.,
Hayes, A.J. & Graham, G.J. 2020. Chemokine receptors coordinately regulate
macrophage dynamics and mammary gland development. Development 147(12):
dev187815.
Wu,
F.Y., Ou, Z.L., Feng, L.Y., Luo, J.M., Wang, L.P.,
Shen, Z.Z. & Shao, Z.M. 2008. Chemokine decoy receptor D6 plays a negative role
in human breast cancer. Molecular Cancer
Research 6(8): 1276-1288.
Yang,
C., Yu, K.D., Xu, W.H., Chen A.X., Fan, L., Ou, Z.L.
& Shao, Z.M. 2013. Effect of genetic variants in two chemokine decoy
receptor genes, DARC and CCBP2, on metastatic potential of breast cancer. PLoS ONE 8: e78901.
Yu,
K.D., Wang, X., Yang, C., Zeng, X.H. & Shao, Z.M. 2015. Host genotype and
tumor phenotype of chemokine decoy receptors integrally affect breast cancer
relapse. Oncotarget 6(28): 26519-26527.
Zaja-Milatovic, S.
& Richmond, A. 2008. CXC chemokines and their receptors: A case for a
significant biological role in cutaneous wound healing. Histology and Histopathology 23(11): 1399-1407.
Zhao,
M., Mueller, B.M., DiScipio, R.G. & Schraufstatter, I.U. 2008. Akt plays an important role in breast cancer cell chemotaxis to CXCL12. Breast Cancer Research and Treatment 110(2): 211-222.
*Corresponding author; email: chew@usm.my
|