Sains Malaysiana 50(10)(2021): 3015-3033

http://doi.org/10.17576/jsm-2021-5010-15

 

Pichia-Expressed Recombinant D6 and DARC Negatively Affect Cell Migration and Invasion of Breast Cancer Cells

(Rekombinan D6 dan DARC Hasilan Pichia Mempengaruhi Migrasi Sel dan Serangan Sel Kanser Payudara secara Negatif)

 

TAN WEE YEE, KHOO BOON YIN & CHEW AI LAN*

 

Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

 

Received: 6 August 2020/Accepted: 19 February 2021

 

ABSTRACT

Atypical chemokine receptor proteins are termed ‘decoy proteins’ as their binding to the respective ligands does not lead to a typical signaling pathway but intercepts the action of chemokines. This method of chemokine activity regulation may also function in tumor suppression. D6 and DARC (Duffy Antigen Receptor for Chemokines) have been reported as decoy chemokine receptors in cancer studies. Purified Pichia-expressed D6 and DARC, produced in-house, were used in cell-based studies to test their biological activities. Cell viability tests showed that recombinant D6 and DARC did not affect cell viability significantly, suggesting that they were not involved in breast cancer cell death. Wound healing assays showed that the presence of recombinant D6 or DARC at 10 µg/mL optimally inhibited the migration of breast cancer cells. ELISA showed an inverse relationship between the recombinant proteins and CCL2 levels in the treated cells. Migration assay using Boyden chamber demonstrated the function of the recombinant proteins in inhibiting chemotaxis activity of treated cells. Invasion assay showed the ability of the recombinant proteins in inhibiting the invasion property of treated cells. Comparison of single and combinatorial effects of the recombinant proteins showed that the combination of D6 and DARC at a 1:1 ratio (10 µg/mL) is most effective in reducing CCL2 levels and inhibiting the migration and invasion of treated cells. It was shown that the purified Pichia-expressed recombinant D6 and DARC are the negative regulators of breast cancer cell migration and invasion, and the inhibition effects were greater when they were used in combination.

 

Keywords: Breast cancer cells; CCL2; cell migration and invasion; D6; DARC

 

ABSTRAK

Protein reseptor kemokin atipikal disebutumpan protein’ kerana pengikatannya dengan ligan masing-masing tidak membawa kepada jalan isyarat yang khas tetapi memintas tindakan kemokin. Ia merupakan satu kawalan aktiviti kemokin dan boleh berfungsi dalam penyekatan tumor. D6 dan DARC telah dilaporkan sebagai reseptor kemokin umpan dalam kajian kanser. D6 dan DARC ekspresi Pichia yang dihasilkan di makmal telah digunakan dalam kajian berdasarkan sel untuk menguji aktiviti biologinya. Ujian daya hidup sel menunjukkan bahawa rekombinan D6 dan DARC tidak mempengaruhi daya maju sel secara signifikan, menunjukkan bahawa mereka tidak terlibat dalam kematian sel barah payudara. Ujian penyembuhan luka menunjukkan bahawa kehadiran D6 atau DARC rekombinan pada 10 µg/mL menghalang penghijrahan sel barah payudara secara optimum. ELISA menunjukkan hubungan terbalik antara protein rekombinan dan tahap CCL2 pada sel yang dirawat. Ujian migrasi menggunakan ruang Boyden menunjukkan fungsi protein rekombinan dalam menghalang aktiviti kemotaksis sel yang dirawat. Ujian penaklukan menunjukkan kemampuan protein rekombinan dalam merencat sifat penaklukan sel yang dirawat. Membandingkan kesan tunggal dan gabungan protein rekombinan, gabungan D6 dan DARC pada nisbah 1: 1 (10 µg/mL) didapati paling baik dalam mengurangkan tahap CCL2 dan seterusnya menghalang migrasi dan penaklukan sel yang dirawat. Hasil kajian menunjukkan bahawa rekombinan D6 dan DARC hasilanPichia bukan hanya pengawal negatif migrasi dan penaklukan sel barah payudara tetapi kesan perencatannya lebih besar ketika digunakan dalam gabungan.

 

Kata kunci: CCL2; D6; DARC; migrasi dan penaklukan sel; sel payudara

 

REFERENCES

Ahmad, F.K., Deris, S. & Abdullah, M.S. 2011. Synergy network based inference for breast cancer metastasis. Procedia Computer Science 3: 1094-1100.

Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., Porter, D., Hu, M., Chin, L., Richardson, A., Schnitt, S., Sellers, W.R. & Polyak, K. 2004. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1): 17-32.

Ben-Baruch, A. 2008. Organ selectivity in metastasis: Regulation by chemokines and their receptors. Clinical & Experimental Metastasis 25(4): 345-356.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. & Jemal, A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68(6): 394-424.

Cabioglu, N., Sahin, A.A., Morandi, P., Meric-Bernstam, F., Islam, R., Lin, H.Y., Bucana, C.D., Gonzalez-Angulo, A.M., Hortobagyi, G.N. & Cristofanilli, M. 2009. Chemokine receptors in advanced breast cancer: Differential expression in metastatic disease sites with diagnostic and therapeutic implications. Annals of Oncology 20(6): 1013-1019.

Cabioglu, N., Yazici, M.S., Arun, B., Broglio, K.R., Hortobagyi, G.N., Price, J.E. & Sahin, A. 2005. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clinical Cancer Research 11(16): 5686-5693.

Chen, L., Zhang, S., Shen, Y., Qi, L., Zhang, Z., Tian, H. & Zou, Z. 2020. Thymus‑expressed chemokine secreted by breast cancer cells promotes metastasis and inhibits apoptosis. Oncology Reports 43: 1875-188.

Dhawan, P. & Richmond, A. 2002. Role of CXCL1 in tumorigenesis of melanoma. Journal of Leukocyte Biology 72(1): 9-18.

Fang, W.B., Jokar, I., Zou, A., Lambert, D., Dendukuri, P. & Cheng, N. 2012. CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms. Journal of Biological Chemistry 287(43): 36593-36608.

Galzi, J.L., Hachet-Haas, M., Bonnet, D., Daubeuf, F., Lecat, S., Hibert, M., Haiech, J. & Frossard, N. 2010. Neutralizing endogenous chemokines with small molecules: Principles and potential therapeutic applications. Pharmacology & Therapeutics 126(1): 39-55.

Gencer, S., van der Vorst, E., Aslani, M., Weber, C., Döring, Y. & Duchene, J. 2019. Atypical chemokine receptors in cardiovascular disease. Thrombosis and Haemostasis 119(4): 534-541.

Grada, A., Otero-Vinas, M., Prieto-Castrillo, F., Obagi, Z. & Falanga, V. 2017. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. The Journal of Investigative Dermatology 137(2): e11-e16.

Graham, G.J. 2009. D6 and the atypical chemokine receptor family: Novel regulators of immune and inflammatory processes. European Journal of Immunology 39(2): 342-351.

Hansell, C.A., Hurson, C.E. & Nibbs, R.J. 2011. DARC and D6: Silent partners in chemokine regulation? Immunology and Cell Biology 89(2): 197-206.

Hansell, C.A., Simpson, C.V. & Nibbs, R.J. 2006. Chemokine sequestration by atypical chemokine receptors. Biochemical Society Transactions 34(6): 1009-1013.

Justus, C.R., Leffler, N., Ruiz-Echevarria, M. & Yang, L.V. 2014. In vitro cell migration and invasion assays. Journal of Visualized Experiments 88: 51046.

Kramer, N., Walzl, A., Unger, C., Rosner, M., Krupitza, G., Hengstschlager, M. & Dolznig, H. 2013. In vitro cell migration and invasion assays. Mutation Research 752(1): 10-24.

Lee, B.C., Song, J., Lee, A., Cho, D. & Kim, T.S. 2020. Erythroid differentiation regulator 1 promotes wound healing by inducing the production of C‑C motif chemokine ligand 2 via the activation of MAP kinases in vitro and in vivo. International Journal of Molecular Medicine 46(6): 2185-2193.

Lokeshwar, B.L., Kallifatidis, G. & Hoy, J.J. 2020. Atypical chemokine receptors in tumor cell growth and metastasis. Advances in Cancer Research 145: 1-27.

Mantovani, A., Bonecchi, R. & Locati, M. 2006. Tuning inflammation and immunity by chemokine sequestration: Decoys and more. Nature Reviews Immunology 6(12): 907-918.

Maryam, M., Samaneh, R., Amin, J., Seyed, H.A., Hossein, M.O., Tannaz, J. & Amirhossein, S. 2020. Peptide decoys: A new technology offering therapeutic opportunities for breast cancer. Drug Discovery Today 25(3): 593-598.

Raman, D., Sobolik-Delmaire, T. & Richmond, A. 2011. Chemokines in health and disease. Experimental Cell Research 317(5): 575-589.

Rezaeeyan, H., Shirzad, R., McKee, T.D. & Saki, N. 2018. Role of chemokines in metastatic niche: New insights along with a diagnostic and prognostic approach. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica 126(5): 359-370.

Saçmacı, H. & Özcan, S. 2020. A critical role for expression of atypical chemokine receptor 2 in multiple sclerosis: A preliminary project. Multiple Sclerosis and Related Disorders 38: 101524.

Sandhu, R., Parker, J.S., Jones, W.D., Livasy, C.A. & Coleman, W.B. 2010. Microarray-based gene expression profiling for molecular classification of breast cancer and identification of new targets for therapy. Laboratory Medicine 41(6): 364-372.

Sjöberg, E., Meyrath, M., Milde, L., Herrera, M., Lövrot, J., Hägerstrand, D., Frings, O., Bartish, M., Rolny, C., Sonnhammer, E., Chevigné, A., Augsten, M. & Östman, A. 2019. A novel ACKR2-dependent role of fibroblast-derived CXCL14 in epithelial-to-mesenchymal transition and metastasis of breast cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 25(12): 3702-3717.

Slettenaar, V.I.F. & Wilson, J.L. 2006. The chemokine network: A target in cancer biology? Advanced Drug Delivery Reviews 58(8): 962-974.

Stone, M.J., Hayward, J.A., Huang, C., Huma, Z.E. & Sanchez, J. 2017. Mechanisms of regulation of the chemokine-receptor network. International Journal of Molecular Sciences 18(2): 342.

Tan, W., Martin, D. & Gutkind, J.S. 2006. The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. Journal of Biological Chemistry 281(51): 39542-39549.

Vacchini, A., Cancellieri, C., Milanesi, S., Badanai, S., Savino, B., Bifari, F., Locati, M., Bonecchi, R. & Borroni, E.M. 2020. Control of cytoskeletal dynamics by β-arrestin1/myosin Vb signaling regulates endosomal sorting and scavenging activity of the atypical chemokine receptor ACKR2. Vaccines 8(3): 542.

Valle Oseguera, C.A. & Spencer, J.V. 2017. Human cytomegalovirus interleukin-10 enhances matrigel invasion of MDA-MB-231 breast cancer cells. Cancer Cell International 17(1): 24.

Wang, J., Ou, Z.L., Hou, Y.F., Luo, J.M., Shen, Z.Z., Ding, J. & Shao, Z.M. 2006. Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene 25(54): 7201-7211.

Wilson, G.J., Fukuoka, A., Love, S.R., Kim, J., Pingen, M., Hayes, A.J. & Graham, G.J. 2020. Chemokine receptors coordinately regulate macrophage dynamics and mammary gland development. Development 147(12): dev187815.

Wu, F.Y., Ou, Z.L., Feng, L.Y., Luo, J.M., Wang, L.P., Shen, Z.Z. & Shao, Z.M. 2008. Chemokine decoy receptor D6 plays a negative role in human breast cancer. Molecular Cancer Research 6(8): 1276-1288.

Yang, C., Yu, K.D., Xu, W.H., Chen A.X., Fan, L., Ou, Z.L. & Shao, Z.M. 2013. Effect of genetic variants in two chemokine decoy receptor genes, DARC and CCBP2, on metastatic potential of breast cancer. PLoS ONE 8: e78901.

Yu, K.D., Wang, X., Yang, C., Zeng, X.H. & Shao, Z.M. 2015. Host genotype and tumor phenotype of chemokine decoy receptors integrally affect breast cancer relapse. Oncotarget 6(28): 26519-26527.

Zaja-Milatovic, S. & Richmond, A. 2008. CXC chemokines and their receptors: A case for a significant biological role in cutaneous wound healing. Histology and Histopathology 23(11): 1399-1407.

Zhao, M., Mueller, B.M., DiScipio, R.G. & Schraufstatter, I.U. 2008. Akt plays an important role in breast cancer cell chemotaxis to CXCL12. Breast Cancer Research and Treatment 110(2): 211-222.

 

*Corresponding author; email: chew@usm.my

   

 

 

previous