Sains Malaysiana 50(10)(2021): 3107-3126

http://doi.org/10.17576/jsm-2021-5010-23

 

Keterlarutan Selulosa, Pelarut dan Produk Selulosa yang Dijana Semula: Suatu Ulasan

(Cellulose Solubility, Solvent and Their Regenerated Cellulose Products: A Review)

 

KUSHAIRI MOHD SALLEH1, SARANI ZAKARIA1*, MARHAINI MOSTAPHA1, UMAR ADLI AMRAN1, WAN NOOR AIDAWATI WAN NADHARI2 & NUR AIN IBRAHIM1

 

1Bioresource & Biorefinery Research Group, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia

 

Received: 2 December 2020/Accepted: 22 February 2021

 

ABSTRAK

Selulosa ialah polimer semula jadi yang boleh diperbaharui dan biasanya ditemui di dalam dinding sel tumbuhan. Interaksi hidrofobik yang kompleks serta sifat amfifilik menyebabkan ia sukar dilarutkan dan seterusnya membataskan penggunaannya secara menyeluruh. Pemahaman kepada struktur kimia dan fiziknya membolehkan proses pelarutan berlaku dengan penggunaan jenis pelarut yang bersesuaian. Namun, pelarut sedia ada bukanlah yang terbaik dan efisien terhadap pelarutan selulosa. Sehingga kini, kajian kepada jenis pelarut dan mekanisme pelarutan masih menjadi topik utama penyelidikan. Selulosa yang terlarut pula boleh dijana semula kepada produk fizikal yang lain, contohnya hidrogel, aerogel, kriogel dan xerogel. Produk yang dijana semula daripada selulosa yang terlarut boleh diacukan kepada pelbagai bentuk yang mempunyai struktur tulang yang kuat dan bersifat hidrofilik, bioserasi dan terbiodegradasi. Potensi dalam aplikasi yang pelbagai serta terbukti sebagai alternatif kepada polimer sintetik menjadikan polimer semula jadi ini berpotensi besar dalam bidang sains dan teknologi. Maka, ulasan kajian terhadap selulosa, jenis pelarut serta produk yang dijana semula daripadanya menjadi fokus dalam penulisan makalah ini.

 

Kata kunci: Pelarutan; pelarut tak-terbitan; pelarut terbitan; produk terjana semula

 

ABSTRACT

Cellulose is a naturally occurring polymer that is renewable and usually found in the plants' cell wall. Cellulose complex hydrophobic interactions and amphiphilic character render them difficult to be dissolved and consequently restricting total utilization. Understanding on their chemical structure and physical behaviour, introduction to suitable solvent allowing dissolution process to occur. Nonetheless, the current solvents are not the best and not as efficient as intended towards cellulose dissolution. Till date, research on solvent types and their reaction mechanism are still explored and characterized. The dissolved cellulose can be regenerated to different physical products such as hydrogel, aerogel, cryogel, and xerogel. The regenerated products from dissolved cellulose can be moulded into various shape with a strong skeletal structure and usually hydrophilic, biocompatible, and can be biodegraded. Cellulose potentials in various applications are proven as an excellent alternative to the synthetic polymer, making this naturally occurring polymer has huge potentials in science and technology. Therefore, a review on cellulose, different types of solvent and regenerated products from cellulose-based materials are the main focus in this manuscript.

 

Keywords: Derivatizing solvent; dissolving; non-derivatizing solvent; regenerated products

 

REFERENCES

Abedi-Koupai, J., Sohrab, F. & Swarbrick, G. 2008. Evaluation of hydrogel application on soil water retention characteristics. J. Plant Nutr. 31: 317-331.

Atalla, R.H. & Isogai, A. 2010. Celluloses. In Comprehensive Natural Products II: Chemistry and Biology, edited by Mander, L. & Liu, H.W. Elsevier. pp. 493-539.

Beaumont, M., König, J., Opietnik, M., Potthast, A. & Rosenau, T. 2017. Drying of a cellulose II gel: Effect of physical modification and redispersibility in water. Cellulose 24: 1199-1209.

Błaszczyński, T., Ślosarczyk, A. & Morawski, M. 2013. Synthesis of silica aerogel by supercritical drying method. Procedia Eng. 57: 200-206.

Bortolin, A., Aouada, F.A., Mattoso, L.H.C. & Ribeiro, C. 2013. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: Evidence of synergistic effects for the slow release of fertilizers. J. Agric. Food Chem. 61: 7431-7439.

Buchtová, N. & Budtova, T. 2016. Cellulose aero-, cryo- and xerogels: Towards understanding of morphology control. Cellulose 23: 2585-2595.

Buwalda, S.J., Boere, K.W.M., Dijkstra, P.J., Feijen, J., Vermonden, T. & Hennink, W.E. 2014. Hydrogels in a historical perspective: From simple networks to smart materials. J. Control Release 190: 254-273.

Cai, J. & Zhang, L. 2005. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci. 5: 539-548.

Cai, J., Zhang, L., Liu, S., Liu, Y., Xu, X., Chen, X., Chu, B., Guo, X., Xu, J., Cheng, H., Han, C.C. & Kuga, S. 2008. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41: 9345-9351.

Calcagnile, P., Sibillano, T., Giannini, C., Sannino, A. & Demitri, C. 2019. Biodegradable poly (lactic acid)/cellulose-based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications. J. Appl. Polym. Sci. 136(21): 47546.

Capanema, N.S.V., Mansur, A.A.P., Jesus, A.C.D., Carvalho, S.M., De Oliveira, L.C. & Mansur, H.S. 2018. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int. J. Biol. Macromol. 106: 1218-1234.

Cuissinat, C. & Navard, P. 2008. Swelling and dissolution of cellulose, Part III: Plant fibres in aqueous systems. Cellulose 15: 67-74.

Cuissinat, C. & Navard, P. 2006. Swelling and dissolution of cellulose Part II : Free floating cotton and wood fibres in NaOH – water – additives systems. Macromol. Symp. 244: 19-30.

Cuissinat, C., Navard, P. & Heinze, T. 2008a. Swelling and dissolution of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydr. Polym. 72: 590-596.

Cuissinat, C., Navard, P. & Heinze, T. 2008b. Swelling and dissolution of cellulose, Part V: Cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose 15: 75-80.

Davidson, G.F. 1934. 12 - The dissolution of chemically modified cotton cellulose in alkaline solutions: Part I - In solutions of sodium hydroxide, particularly at temperatures below the normal. J. Text. Inst. Trans. 25: T174-T196.

Davis, W.E., King, A.J., Barry, A.J. & Peterson, F.C. 1943. X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J. Am. Chem. Soc. 65: 1294-1299.

De Silva, R., Vongsanga, K., Wang, X. & Byrne, N. 2016. Understanding key wet spinning parameters in an ionic liquid spun regenerated cellulosic fibre. Cellulose 23: 2741-2751.

Delbecq, F., Wang, Y., Muralidhara, A., El Ouardi, K.E., Marlair, G. & Len, C. 2018. Hydrolysis of hemicellulose and derivatives - A review of recent advances in the production of furfural. Front. Chem. 6: 146.

Demitri, C., Scalera, F., Madaghiele, M., Sannino, A. & Maffezzoli, A. 2013. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int. J. Polym. Sci. 2013: 435073.

El-Sherbiny, I. & Yacoub, M. 2013. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013: 316-342.

El Seoud, O.A. & Heinze, T. 2005. Organic esters of cellulose: New perspectives for old polymers. Adv. Polym. Sci. 186: 103-149.

Elbarbary, A.M. & Ghobashy, M.M. 2017. Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation. Radiochim. Acta 105: 865-876.

Feksa, L.R., Troian, E.A., Muller, C.D., Viegas, F., Machado, A.B. & Rech, V.C. 2018. Hydrogels for biomedical applications. In Nanostructures for the Engineering of Cells, Tissues and Organs: From Design to Applications, edited by Grumezescu, A.M. William Andrew Publishing. pp. 403-438.

Gan, S., Zakaria, S., Salleh, K.M., Anuar, N.I.S., Moosavi, S. & Chen, R.S. 2020. An improved physico-mechanical performance of macropores membrane made from synthesized cellulose carbamate. Int. J. Biol. Macromol. 158: 552-561.

Gavillon, R. & Budtova, T. 2007. Aerocellulose: New highly porous cellulose prepared from cellulose−NaOH aqueous solutions. Biomacromolecules 9: 269-277.

Glasser, W.G. 2008. Cellulose and associated heteropolysaccharides. Glycoscience. Berlin, Heidelberg: Springer-Verlag. p. 1473.

van de ven, T.G.M. & Godbout, L. 2013. Cellulose - Fundamental Aspects. https://www.intechopen.com/books/2326.

Gou, L., Xiang, M. & Ni, X. 2020. Development of wound therapy in nursing care of infants by using injectable gelatin-cellulose composite hydrogel incorporated with silver nanoparticles. Mater. Lett. 277: 128340.

Graenacher, C. 1934. Cellulose Solution. US1943176A.

Gulrez, S.K.H., Al-Assaf, S. & Phillips, G.O. 2003. Hydrogels: Methods of preparation, characterisation and applications. Prog. Mol. Environ. Bioeng. 51: 117-150.

Gun’ko, V.M., Savina, I.N. & Mikhalovsky, S.V. 2013. Cryogels: Morphological, structural and adsorption characterisation. Adv. Colloid Interface Sci. 187-188: 1-46.

Guo, Y., Zhou, J., Wang, Y., Zhang, L. & Lin, X. 2010. An efficient transformation of cellulose into cellulose carbamates assisted by microwave irradiation. Cellulose 17: 1115-1125.

Heinze, T. & Koschella, A. 2005. Solvents applied in the field of cellulose chemistry: A mini review. Polímeros 15: 84-90.

Hixon, K.R., Lu, T. & Sell, S.A. 2017. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater. 62: 29-41.

Hoffman, A.S. 2012. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64: 18-23.

Innerlohinger, J., Weber, H.K. & Kraft, G. 2006. Aerocellulose: Aerogels and aerogel-like materials made from cellulose. Macromol. Symp. 244: 126-135.

Itagaki, H., Tokai, M. & Kondo, T. 1997. Physical gelation process for cellulose whose hydroxyl groups are regioselectively substituted by fluorescent groups. Polymer (Guildf). 38: 4201-4205.

McNaught, A.D. & Wilkinson, A. 1997. Coprecipitation. Compendium of Chemical Terminology: IUPAC Recommendations. 2nd ed. Blackwell Science. p. 336.

Jeddi, M.K. & Mahkam, M. 2019. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int. J. Biol. Macromol. 135: 829-838.

Karadagli, I., Milow, B., Ratke, L. & Schulz, B. 2012. Synthesis and characterization of highly porous cellulose aerogels for textiles applications. https://elib.dlr.de/78416/.

Khan, S., Ul-islam, M., Ikram, M., Ul, S., Wajid, M., Israr, M., Hyun, J., Yoon, S. & Kon, J. 2018. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and in vivo. Int. J. Biol. Macromol. 117: 1200-1210.

Khattab, T.A., Dacrory, S., Abou-Yousef, H. & Kamel, S. 2019. Development of microporous cellulose-based smart xerogel reversible sensor via freeze drying for naked-eye detection of ammonia gas. Carbohydr. Polym. 210: 196-203.

Kihlman, M., Medronho, B.F., Romano, A.L., Germgård, U. & Lindman, B. 2013. Cellulose dissolution in an alkali based solvent: Influence of additives and pretreatments. J. Braz. Chem. Soc. 24: 295-303.

Kistler, S.S. 1932. Coherent expanded aerogels. J. Phys. Chem. 63: 52-64.

Klemm, D., Philipp, B., Heinze, T., Heinze, U. & Wagenknecht, W. 1998. Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods, Volume 1. Wiley‐VCH Verlag GmbH.

Klvana, D., Chaouki, J., Repellin-Lacroix, M. & Pajonk, G. 1989. A new method of preparation of aerogel-like materials using a freeze-drying process. Le J. Phys. Colloq. 50(C4): C4-29-C4-32.

Kondo, T. 1997. The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J. Polym. Sci. Part B Polym. Phys. 35: 717-723.

Kono, H. & Fujita, S. 2012. Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr. Polym. 87: 2582-2588.

Kumar, A. 2016. Supermacroporous Cryogels: Biomedical and Biotechnological Applications. New Jersey: CRC Press.

Kumar, A., Mishra, R., Reinwald, Y. & Bhat, S. 2010. Cryogels: Freezing unveiled by thawing. Mater. Today 13: 42-44.

Labafzadeh, S.R. 2015. Cellulose-based materials. Academic Dissertation. University of Helsinki (Unpublished).

Leipner, H., Fischer, S., Brendler, E. & Voigt, W. 2000. Structural changes of cellulose dissolved in molten salt hydrates. Macromol. Chem. Phys. 201: 2041-2049.

Liao, Q., Su, X., Zhu, W., Hua, W., Qian, Z., Liu, L. & Yao, J. 2016. Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv. 6: 63773-63781.

Lin, R., Li, A., Zheng, T., Lu, L. & Cao, Y. 2015. Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv. 5: 82027-82033.

Lindman, B., Karlström, G. & Stigsson, L. 2010. On the mechanism of dissolution of cellulose. J. Mol. Liq. 156: 76-81.

Liu, Q., Liu, J., Qin, S., Pei, Y., Zheng, X. & Tang, K. 2020. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. Int. J. Biol. Macromol. 164: 1776-1784.

Lue, A., Liu, Y., Zhang, L. & Potthas, A. 2011. Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer (Guildf). 52: 3857-3864.

Luo, X. & Zhang, L. 2013. New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res. Int. 52: 387-400.

Maharjan, B., Park, J., Kaliannagounder, V.K., Awasthi, G.P., Joshi, M.K., Park, C.H. & Kim, C.S. 2021. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr. Polym. 251: 117023.

Medronho, B., Romano, A., Miguel, M.G., Stigsson, L. & Lindman, B. 2012. Rationalizing cellulose (in)solubility: Reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19: 581-587.

Mi, Q.Y., Ma, S.R., Yu, J., He, J.S. & Zhang, J. 2016. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain. Chem. Eng. 4: 656-660.

Mirtaghavi, A., Baldwin, A., Tanideh, N., Zarei, M., Muthuraj, R., Cao, Y., Zhao, G., Geng, J., Jin, H. & Luo, J. 2020. Crosslinked porous three-dimensional cellulose nano fi bers-gelatine biocomposite scaffolds for tissue regeneration. Int. J. Biol. Macromol. 164: 1949-1959.

Moon, R.J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40: 3941-3994.

Nagel, M.C.V., Koschella, A., Voiges, K., Mischnick, P. & Heinze, T. 2010. Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O. Eur. Polym. J. 46: 1726-1735.

O’Sullivan, A.C. 1997. Cellulose: The structure slowly unravels. Cellulose 4: 173-207.

Padzil, F.N.M., Gan, S., Zakaria, S., Mohamad, S.F., Mohamed, N.H., Seo, Y.B. & Ellis, A.V. 2018. Increased solubility of plant core pulp cellulose for regenerated hydrogels through electron beam irradiation. Cellulose 25: 4993-5006.

Padzil, F.N.M., Zakaria, S., Chia, C.H., Jaafar, S.N.S., Kaco, H., Gan, S. & Ng, P. 2015. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline–urea systems. Carbohydr. Polym. 124: 164-171.

Pal, K., Banthia, A. & Majumdar, D. 2009. Polymeric hydrogels: Characterization and biomedical applications. Des. Monomers Polym. 12: 197-220.

Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. & Johnson, D.K. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3: 1-10.

Payen, M. 1838. Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes-rendus l’académie des Sci. 7: 1052-1057.

Petitpas, T. 1948. Etude de l’alcali-cellulose: Variations de structure de la cellulose dans les lessives alcalines. Compte-rendu du Lab. Cent. des Serv. Chim- iques l’Etat 226: 139-147.

Philipp, B., Schleicher, H. & Wagenknecht, W. 1977. Non-aqueous solvents of cellulose. Cellul. Chem. Technol. 48: 278-297.

Pierre, A.C. 2011. History of aerogels. In Advances in Sol-Gel Derived Materials and Technologies, edited by Aegerter, M.A. & Prassas, M. New York: Springer. pp. 3-18.

Pottathara, Y.B., Bobnar, V., Finšgar, M., Grohens, Y., Thomas, S. & Kokol, V. 2018. Cellulose nanofibrils-reduced graphene oxide xerogels and cryogels for dielectric and electrochemical storage applications. Polymer (Guildf) 147: 260-270.

Qi, H., Liebert, T., Meister, F. & Heinze, T. 2009. Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React. Funct. Polym. 69: 779-784.

Salleh, K.M., Zakaria, S., Gan, S., Baharin, K.W., Ibrahim, N.A. & Zamzamin, R. 2020. Interconnected macropores cryogel with nano-thin crosslinked network regenerated cellulose. Int. J. Biol. Macromol. 148: 11-19.

Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S. & Kaco, H. 2019. Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. Int. J. Biol. Macromol. 131: 50-59.

Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H., Jaafar, S.N. & Amran, U.A. 2018. Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. Int. J. Biol. Macromol. 118: 1422-1430.

Sannino, A., Demitri, C. & Madaghiele, M. 2009. Biodegradable cellulose-based hydrogels: Design and applications. Materials (Basel) 2: 353-373.

Sarko, A., Southwick, J. & Hayashi, J. 1976. Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. Macromolecules 9: 857-863.

Sen, S., Martin, J.D. & Argyropoulos, D.S. 2013. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain. Chem. Eng. 1: 858-870.

Sescousse, R., Gavillon, R. & Budtova, T. 2011. Aerocellulose from cellulose-ionic liquid solutions: Preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr. Polym. 83: 1766-1774.

Shen, Q., 2010. Surface properties of cellulose and cellulose derivatives: A review.  In Model Cellulose Surface, edited by Roman, M. Oxford: Oxford University Press. pp. 259-289.

Sixta, H. 2006. Handbook of Pulp. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

Sobue, H., Kiessig, H. & Hess, K. 1939. Das system cellulose–natriumhydroxyd–wasser in abhängigkeit von der temperatur. Zeitschrift für Phys. Chemie 43: 309-328.

Stergar, J. & Maver, U. 2016. Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 77: 738-752.

Swatloski, R.P., Spear, S.K., Holbrey, J.D. & Rogers, R.D. 2002. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124: 4974-4975.

Tamon, H. & Ishizaka, H. 1999. Preparation of organic mesoporous gel by supercritical/freeze drying. Dry. Technol. 17: 1653-1665.

Tamon, H., Ishizaka, H., Yamamoto, T. & Suzuki, T. 2001. Freeze drying for preparation of aerogel-like carbon. Dry. Technol. 19: 313-324.

Tamon, H., Ishizaka, H., Mikami, M. & Okazaki, M. 1997. Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35: 791-796.

Liebert, T.F., Heinze, T.J. & Edgar, K.J. 2010. Cellulose Solvents: For Analysis, Shaping and Chemical Modification. ACS Division of Cellulose and Renewable Materials.

VanBemmelen, J.M. 1894. Der Hydrogel und das kristallinische Hydrat des Kupferoxydes. Zeitschrift für Anorg. und Allg. Chemie 5: 466.

Vyas, C., Poologasundarampillai, G., Hoyland, J. & Bartolo, P. 2017. 3D Printing of Biocomposites for Osteochondral Tissue Engineering. 2nd ed. Biomedical Composites. Elsevier Ltd.

Wang, R., Shou, D., Lv, O., Kong, Y., Deng, L. & Shen, J. 2017. pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int. J. Biol. Macromol. 103: 248-253.

Wang, Y. 2008. Cellulose Fiber Dissolution in Sodium Hydroxide Solution at Low Temperature: Dissolution Kinetics and Solubility Improvement. Georgia Institute of Technology.

Wichterle, O. & Lim, D. 1960. Hydrophilic gels for biological use. Nature 185: 117-129.

Wolfrom, M.L. 1955. Advances in Carbohydrate Chemistry. New York: Acad. Press Inc. p. 10.

Yahia, L.H., Chirani, N., Gritsch, L., Motta, F.L. & Natta, C.G. 2015. History and applications of hydrogels. iMedPub Journals 4: 1-23.

Yamasaki, S., Sakuma, W., Yasui, H., Daicho, K., Saito, T., Fujisawa, S., Isogai, A. & Kanamori, K. 2019. Nanocellulose xerogels with high porosities and large specific surface areas. Front. Chem. 7: 1-8.

Zhang, L., Ruan, D. & Gao, S. 2002. Dissolution and regeneration of cellulose in NaOH/Thiourea aqueous solution. J. Polym. Sci. Part B Polym. Phys. 40: 1521-1529.

Zhou, J. & Zhang, L. 2000. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J. 32: 866-870.

Zhou, J., Chang, C., Zhang, R. & Zhang, L. 2007. Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 7: 804-809.

Zhou, J., Zhang, L. & Cai, J. 2004. Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. J. Polym. Sci. Part B Polym. Phys. 42: 347-353.

 

*Corresponding author; email: szakaria@ukm.edu.my

   

 

 

previous