Sains Malaysiana 50(10)(2021): 3107-3126
http://doi.org/10.17576/jsm-2021-5010-23
Keterlarutan Selulosa, Pelarut dan Produk Selulosa yang Dijana Semula: Suatu Ulasan
(Cellulose Solubility, Solvent and
Their Regenerated Cellulose Products: A Review)
KUSHAIRI
MOHD SALLEH1, SARANI ZAKARIA1*, MARHAINI MOSTAPHA1,
UMAR ADLI AMRAN1, WAN NOOR AIDAWATI WAN NADHARI2 &
NUR AIN IBRAHIM1
1Bioresource & Biorefinery
Research Group, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Malaysian Institute of Chemical and
Bioengineering Technology, Universiti Kuala Lumpur, Lot
1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka,
Malaysia
Received:
2 December 2020/Accepted: 22 February 2021
ABSTRAK
Selulosa ialah polimer semula jadi yang boleh diperbaharui dan biasanya ditemui di dalam dinding sel tumbuhan. Interaksi hidrofobik yang kompleks serta sifat amfifilik menyebabkan ia sukar dilarutkan dan seterusnya membataskan penggunaannya secara menyeluruh. Pemahaman kepada struktur kimia dan fiziknya membolehkan proses pelarutan berlaku dengan penggunaan jenis pelarut yang bersesuaian. Namun, pelarut sedia ada bukanlah yang terbaik dan efisien terhadap pelarutan selulosa. Sehingga kini, kajian kepada jenis pelarut dan mekanisme pelarutan masih menjadi topik utama penyelidikan. Selulosa yang terlarut pula boleh dijana semula kepada produk fizikal yang lain, contohnya hidrogel, aerogel, kriogel dan xerogel. Produk yang dijana semula daripada selulosa yang terlarut boleh diacukan kepada pelbagai bentuk yang mempunyai struktur tulang yang kuat dan bersifat hidrofilik, bioserasi dan terbiodegradasi. Potensi dalam aplikasi yang pelbagai serta terbukti sebagai alternatif kepada polimer sintetik menjadikan polimer semula jadi ini berpotensi besar dalam bidang sains dan teknologi. Maka, ulasan kajian terhadap selulosa, jenis pelarut serta produk yang dijana semula daripadanya menjadi fokus dalam penulisan makalah ini.
Kata kunci: Pelarutan; pelarut tak-terbitan; pelarut terbitan; produk terjana semula
ABSTRACT
Cellulose
is a naturally occurring polymer that is renewable and usually found in the
plants' cell wall. Cellulose complex hydrophobic interactions and amphiphilic
character render them difficult to be dissolved and consequently restricting
total utilization. Understanding on their chemical structure and physical
behaviour, introduction to suitable solvent allowing dissolution process to
occur. Nonetheless, the current solvents are not the best and not as efficient
as intended towards cellulose dissolution. Till date, research on solvent types
and their reaction mechanism are still explored and characterized. The
dissolved cellulose can be regenerated to different physical products such as
hydrogel, aerogel, cryogel, and xerogel. The
regenerated products from dissolved cellulose can be moulded into various shape
with a strong skeletal structure and usually hydrophilic, biocompatible, and
can be biodegraded. Cellulose potentials in various applications are proven as
an excellent alternative to the synthetic polymer, making this naturally
occurring polymer has huge potentials in science and technology. Therefore, a
review on cellulose, different types of solvent and regenerated products from
cellulose-based materials are the main focus in this manuscript.
Keywords:
Derivatizing solvent; dissolving; non-derivatizing solvent; regenerated
products
REFERENCES
Abedi-Koupai, J.,
Sohrab, F. & Swarbrick, G. 2008. Evaluation of hydrogel application on soil
water retention characteristics. J. Plant Nutr. 31: 317-331.
Atalla,
R.H. & Isogai, A. 2010. Celluloses. In Comprehensive Natural Products
II: Chemistry and Biology, edited by Mander, L. & Liu, H.W. Elsevier.
pp. 493-539.
Beaumont,
M., König, J., Opietnik, M., Potthast, A. & Rosenau, T. 2017. Drying of a
cellulose II gel: Effect of physical modification and redispersibility in
water. Cellulose 24: 1199-1209.
Błaszczyński,
T., Ślosarczyk, A. & Morawski, M. 2013. Synthesis of silica aerogel by
supercritical drying method. Procedia Eng. 57: 200-206.
Bortolin,
A., Aouada, F.A., Mattoso, L.H.C. & Ribeiro, C. 2013. Nanocomposite
PAAm/methyl cellulose/montmorillonite hydrogel: Evidence of synergistic effects
for the slow release of fertilizers. J. Agric. Food Chem. 61: 7431-7439.
Buchtová,
N. & Budtova, T. 2016. Cellulose aero-, cryo- and xerogels: Towards
understanding of morphology control. Cellulose 23: 2585-2595.
Buwalda,
S.J., Boere, K.W.M., Dijkstra, P.J., Feijen, J., Vermonden, T. & Hennink,
W.E. 2014. Hydrogels in a historical perspective: From simple networks to smart
materials. J. Control Release 190: 254-273.
Cai,
J. & Zhang, L. 2005. Rapid dissolution of cellulose in LiOH/urea and
NaOH/urea aqueous solutions. Macromol. Biosci. 5: 539-548.
Cai,
J., Zhang, L., Liu, S., Liu, Y., Xu, X., Chen, X., Chu, B., Guo, X., Xu, J.,
Cheng, H., Han, C.C. & Kuga, S. 2008. Dynamic self-assembly induced rapid
dissolution of cellulose at low temperatures. Macromolecules 41:
9345-9351.
Calcagnile,
P., Sibillano, T., Giannini, C., Sannino, A. & Demitri, C. 2019.
Biodegradable poly (lactic acid)/cellulose-based superabsorbent hydrogel
composite material as water and fertilizer reservoir in agricultural
applications. J. Appl. Polym. Sci. 136(21): 47546.
Capanema,
N.S.V., Mansur, A.A.P., Jesus, A.C.D., Carvalho, S.M., De Oliveira, L.C. &
Mansur, H.S. 2018. Superabsorbent crosslinked carboxymethyl cellulose-PEG
hydrogels for potential wound dressing applications. Int. J. Biol. Macromol. 106: 1218-1234.
Cuissinat,
C. & Navard, P. 2008. Swelling and dissolution of cellulose, Part III:
Plant fibres in aqueous systems. Cellulose 15: 67-74.
Cuissinat,
C. & Navard, P. 2006. Swelling and dissolution of cellulose Part II :
Free floating cotton and wood fibres in NaOH – water – additives systems. Macromol.
Symp. 244: 19-30.
Cuissinat,
C., Navard, P. & Heinze, T. 2008a. Swelling and dissolution of cellulose.
Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydr.
Polym. 72: 590-596.
Cuissinat,
C., Navard, P. & Heinze, T. 2008b. Swelling and dissolution of cellulose,
Part V: Cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose 15: 75-80.
Davidson,
G.F. 1934. 12 - The dissolution of chemically modified cotton cellulose in
alkaline solutions: Part I - In solutions of sodium hydroxide, particularly at
temperatures below the normal. J. Text. Inst. Trans. 25: T174-T196.
Davis,
W.E., King, A.J., Barry, A.J. & Peterson, F.C. 1943. X-ray studies of
reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and
primary amines. J. Am. Chem. Soc. 65: 1294-1299.
De
Silva, R., Vongsanga, K., Wang, X. & Byrne, N. 2016. Understanding key wet
spinning parameters in an ionic liquid spun regenerated cellulosic fibre. Cellulose 23: 2741-2751.
Delbecq,
F., Wang, Y., Muralidhara, A., El Ouardi, K.E., Marlair, G. & Len, C. 2018.
Hydrolysis of hemicellulose and derivatives - A review of recent advances in
the production of furfural. Front. Chem. 6: 146.
Demitri,
C., Scalera, F., Madaghiele, M., Sannino, A. & Maffezzoli, A. 2013.
Potential of cellulose-based superabsorbent hydrogels as water reservoir in
agriculture. Int. J. Polym. Sci. 2013: 435073.
El-Sherbiny,
I. & Yacoub, M. 2013. Hydrogel scaffolds for tissue engineering: Progress
and challenges. Glob. Cardiol. Sci. Pract. 2013: 316-342.
El
Seoud, O.A. & Heinze, T. 2005. Organic esters of cellulose: New
perspectives for old polymers. Adv. Polym. Sci. 186: 103-149.
Elbarbary,
A.M. & Ghobashy, M.M. 2017. Controlled release fertilizers using
superabsorbent hydrogel prepared by gamma radiation. Radiochim. Acta 105: 865-876.
Feksa,
L.R., Troian, E.A., Muller, C.D., Viegas, F., Machado, A.B. & Rech, V.C.
2018. Hydrogels for biomedical applications. In Nanostructures for the
Engineering of Cells, Tissues and Organs: From Design to Applications, edited
by Grumezescu, A.M. William Andrew Publishing. pp. 403-438.
Gan,
S., Zakaria, S., Salleh, K.M., Anuar, N.I.S., Moosavi, S. & Chen, R.S.
2020. An improved physico-mechanical performance of macropores membrane made
from synthesized cellulose carbamate. Int. J. Biol. Macromol. 158:
552-561.
Gavillon,
R. & Budtova, T. 2007. Aerocellulose: New highly porous cellulose prepared
from cellulose−NaOH aqueous solutions. Biomacromolecules 9:
269-277.
Glasser,
W.G. 2008. Cellulose and associated heteropolysaccharides. Glycoscience.
Berlin, Heidelberg: Springer-Verlag. p. 1473.
van de
ven, T.G.M. & Godbout, L. 2013. Cellulose - Fundamental Aspects. https://www.intechopen.com/books/2326.
Gou,
L., Xiang, M. & Ni, X. 2020. Development of wound therapy in nursing care
of infants by using injectable gelatin-cellulose composite hydrogel
incorporated with silver nanoparticles. Mater. Lett. 277: 128340.
Graenacher,
C. 1934. Cellulose Solution. US1943176A.
Gulrez,
S.K.H., Al-Assaf, S. & Phillips, G.O. 2003. Hydrogels: Methods of
preparation, characterisation and applications. Prog. Mol. Environ. Bioeng. 51: 117-150.
Gun’ko,
V.M., Savina, I.N. & Mikhalovsky, S.V. 2013. Cryogels: Morphological,
structural and adsorption characterisation. Adv. Colloid Interface Sci. 187-188: 1-46.
Guo,
Y., Zhou, J., Wang, Y., Zhang, L. & Lin, X. 2010. An efficient
transformation of cellulose into cellulose carbamates assisted by microwave
irradiation. Cellulose 17: 1115-1125.
Heinze,
T. & Koschella, A. 2005. Solvents applied in the field of cellulose
chemistry: A mini review. Polímeros 15: 84-90.
Hixon,
K.R., Lu, T. & Sell, S.A. 2017. A comprehensive review of cryogels and
their roles in tissue engineering applications. Acta Biomater. 62:
29-41.
Hoffman,
A.S. 2012. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:
18-23.
Innerlohinger,
J., Weber, H.K. & Kraft, G. 2006. Aerocellulose: Aerogels and aerogel-like
materials made from cellulose. Macromol. Symp. 244: 126-135.
Itagaki,
H., Tokai, M. & Kondo, T. 1997. Physical gelation process for cellulose
whose hydroxyl groups are regioselectively substituted by fluorescent groups. Polymer
(Guildf). 38: 4201-4205.
McNaught, A.D. & Wilkinson, A. 1997. Coprecipitation. Compendium
of Chemical Terminology: IUPAC Recommendations. 2nd ed. Blackwell Science. p. 336.
Jeddi,
M.K. & Mahkam, M. 2019. Magnetic nano carboxymethyl
cellulose-alginate/chitosan hydrogel beads as biodegradable devices for
controlled drug delivery. Int. J. Biol. Macromol. 135: 829-838.
Karadagli,
I., Milow, B., Ratke, L. & Schulz, B. 2012. Synthesis and characterization
of highly porous cellulose aerogels for textiles applications.
https://elib.dlr.de/78416/.
Khan,
S., Ul-islam, M., Ikram, M., Ul, S., Wajid, M., Israr, M., Hyun, J., Yoon, S.
& Kon, J. 2018. Preparation and structural characterization of surface
modified microporous bacterial cellulose scaffolds: A potential material for
skin regeneration applications in vitro and in vivo. Int. J.
Biol. Macromol. 117: 1200-1210.
Khattab,
T.A., Dacrory, S., Abou-Yousef, H. & Kamel, S. 2019. Development of
microporous cellulose-based smart xerogel reversible sensor via freeze drying
for naked-eye detection of ammonia gas. Carbohydr. Polym. 210: 196-203.
Kihlman,
M., Medronho, B.F., Romano, A.L., Germgård, U. & Lindman, B. 2013.
Cellulose dissolution in an alkali based solvent: Influence of additives and
pretreatments. J. Braz. Chem. Soc. 24: 295-303.
Kistler,
S.S. 1932. Coherent expanded aerogels. J. Phys. Chem. 63: 52-64.
Klemm,
D., Philipp, B., Heinze, T., Heinze, U. & Wagenknecht, W. 1998. Comprehensive Cellulose Chemistry:
Fundamentals and Analytical Methods, Volume 1. Wiley‐VCH Verlag GmbH.
Klvana,
D., Chaouki, J., Repellin-Lacroix, M. & Pajonk, G. 1989. A new method of
preparation of aerogel-like materials using a freeze-drying process. Le J. Phys.
Colloq. 50(C4): C4-29-C4-32.
Kondo,
T. 1997. The relationship between intramolecular hydrogen bonds and certain
physical properties of regioselectively substituted cellulose derivatives. J.
Polym. Sci. Part B Polym. Phys. 35: 717-723.
Kono,
H. & Fujita, S. 2012. Biodegradable superabsorbent hydrogels derived from
cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic
dianhydride. Carbohydr. Polym. 87: 2582-2588.
Kumar,
A. 2016. Supermacroporous Cryogels: Biomedical and Biotechnological
Applications. New Jersey: CRC Press.
Kumar,
A., Mishra, R., Reinwald, Y. & Bhat, S. 2010. Cryogels: Freezing unveiled
by thawing. Mater. Today 13: 42-44.
Labafzadeh,
S.R. 2015. Cellulose-based materials. Academic Dissertation. University of
Helsinki (Unpublished).
Leipner,
H., Fischer, S., Brendler, E. & Voigt, W. 2000. Structural changes of
cellulose dissolved in molten salt hydrates. Macromol. Chem. Phys. 201:
2041-2049.
Liao,
Q., Su, X., Zhu, W., Hua, W., Qian, Z., Liu, L. & Yao, J. 2016. Flexible
and durable cellulose aerogels for highly effective oil/water separation. RSC
Adv. 6: 63773-63781.
Lin,
R., Li, A., Zheng, T., Lu, L. & Cao, Y. 2015. Hydrophobic and flexible
cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv. 5:
82027-82033.
Lindman,
B., Karlström, G. & Stigsson, L. 2010. On the mechanism of dissolution of
cellulose. J. Mol. Liq. 156: 76-81.
Liu,
Q., Liu, J., Qin, S., Pei, Y., Zheng, X. & Tang, K. 2020. High mechanical
strength gelatin composite hydrogels reinforced by cellulose nanofibrils with
unique beads-on-a-string morphology. Int. J. Biol. Macromol. 164:
1776-1784.
Lue,
A., Liu, Y., Zhang, L. & Potthas, A. 2011. Light scattering study on the
dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer (Guildf). 52: 3857-3864.
Luo,
X. & Zhang, L. 2013. New solvents and functional materials prepared from
cellulose solutions in alkali/urea aqueous system. Food Res. Int. 52:
387-400.
Maharjan,
B., Park, J., Kaliannagounder, V.K., Awasthi, G.P., Joshi, M.K., Park, C.H.
& Kim, C.S. 2021. Regenerated cellulose nanofiber reinforced chitosan
hydrogel scaffolds for bone tissue engineering. Carbohydr. Polym. 251:
117023.
Medronho,
B., Romano, A., Miguel, M.G., Stigsson, L. & Lindman, B. 2012.
Rationalizing cellulose (in)solubility: Reviewing basic physicochemical aspects
and role of hydrophobic interactions. Cellulose 19: 581-587.
Mi,
Q.Y., Ma, S.R., Yu, J., He, J.S. & Zhang, J. 2016. Flexible and transparent
cellulose aerogels with uniform nanoporous structure by a controlled
regeneration process. ACS Sustain. Chem. Eng. 4: 656-660.
Mirtaghavi,
A., Baldwin, A., Tanideh, N., Zarei, M., Muthuraj, R., Cao, Y., Zhao, G., Geng,
J., Jin, H. & Luo, J. 2020. Crosslinked porous three-dimensional cellulose
nano fi bers-gelatine biocomposite scaffolds for tissue regeneration. Int.
J. Biol. Macromol. 164: 1949-1959.
Moon,
R.J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. 2011. Cellulose
nanomaterials review: Structure, properties and nanocomposites. Chemical
Society Reviews 40: 3941-3994.
Nagel,
M.C.V., Koschella, A., Voiges, K., Mischnick, P. & Heinze, T. 2010.
Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O. Eur.
Polym. J. 46: 1726-1735.
O’Sullivan,
A.C. 1997. Cellulose: The structure slowly unravels. Cellulose 4:
173-207.
Padzil,
F.N.M., Gan, S., Zakaria, S., Mohamad, S.F., Mohamed, N.H., Seo, Y.B. &
Ellis, A.V. 2018. Increased solubility of plant core pulp cellulose for
regenerated hydrogels through electron beam irradiation. Cellulose 25:
4993-5006.
Padzil,
F.N.M., Zakaria, S., Chia, C.H., Jaafar, S.N.S., Kaco, H., Gan, S. & Ng, P.
2015. Effect of acid hydrolysis on regenerated kenaf core membrane produced
using aqueous alkaline–urea systems. Carbohydr. Polym. 124: 164-171.
Pal,
K., Banthia, A. & Majumdar, D. 2009. Polymeric hydrogels: Characterization
and biomedical applications. Des. Monomers Polym. 12: 197-220.
Park,
S., Baker, J.O., Himmel, M.E., Parilla, P.A. & Johnson, D.K. 2010.
Cellulose crystallinity index: Measurement techniques and their impact on
interpreting cellulase performance. Biotechnol. Biofuels 3: 1-10.
Payen,
M. 1838. Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes-rendus
l’académie des Sci. 7: 1052-1057.
Petitpas,
T. 1948. Etude de l’alcali-cellulose: Variations de structure de la cellulose
dans les lessives alcalines. Compte-rendu du Lab. Cent. des Serv. Chim-
iques l’Etat 226: 139-147.
Philipp,
B., Schleicher, H. & Wagenknecht, W. 1977. Non-aqueous solvents of
cellulose. Cellul. Chem. Technol. 48: 278-297.
Pierre,
A.C. 2011. History of aerogels. In Advances in Sol-Gel Derived Materials and
Technologies, edited by Aegerter, M.A. & Prassas, M. New York:
Springer. pp. 3-18.
Pottathara,
Y.B., Bobnar, V., Finšgar, M., Grohens, Y., Thomas, S. & Kokol, V. 2018.
Cellulose nanofibrils-reduced graphene oxide xerogels and cryogels for
dielectric and electrochemical storage applications. Polymer (Guildf) 147: 260-270.
Qi,
H., Liebert, T., Meister, F. & Heinze, T. 2009. Homogenous
carboxymethylation of cellulose in the NaOH/urea aqueous solution. React.
Funct. Polym. 69: 779-784.
Salleh,
K.M., Zakaria, S., Gan, S., Baharin, K.W., Ibrahim, N.A. & Zamzamin, R.
2020. Interconnected macropores cryogel with nano-thin crosslinked network
regenerated cellulose. Int. J. Biol. Macromol. 148: 11-19.
Salleh,
K.M., Zakaria, S., Sajab, M.S., Gan, S. & Kaco, H. 2019. Superabsorbent hydrogel
from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. Int.
J. Biol. Macromol. 131: 50-59.
Salleh,
K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H., Jaafar, S.N. & Amran,
U.A. 2018. Chemically crosslinked hydrogel and its driving force towards
superabsorbent behaviour. Int. J. Biol. Macromol. 118: 1422-1430.
Sannino,
A., Demitri, C. & Madaghiele, M. 2009. Biodegradable cellulose-based
hydrogels: Design and applications. Materials (Basel) 2: 353-373.
Sarko,
A., Southwick, J. & Hayashi, J. 1976. Packing analysis of carbohydrates and
polysaccharides. 7. Crystal structure of cellulose IIII and its relationship to
other cellulose polymorphs. Macromolecules 9: 857-863.
Sen,
S., Martin, J.D. & Argyropoulos, D.S. 2013. Review of cellulose
non-derivatizing solvent interactions with emphasis on activity in inorganic
molten salt hydrates. ACS Sustain. Chem. Eng. 1: 858-870.
Sescousse,
R., Gavillon, R. & Budtova, T. 2011. Aerocellulose from cellulose-ionic
liquid solutions: Preparation, properties and comparison with cellulose-NaOH
and cellulose-NMMO routes. Carbohydr. Polym. 83: 1766-1774.
Shen, Q., 2010. Surface properties of
cellulose and cellulose derivatives: A review. In Model Cellulose Surface,
edited by Roman, M. Oxford: Oxford University Press. pp. 259-289.
Sixta,
H. 2006. Handbook of Pulp. Weinheim: Wiley-VCH Verlag GmbH & Co.
KGaA.
Sobue,
H., Kiessig, H. & Hess, K. 1939. Das system
cellulose–natriumhydroxyd–wasser in abhängigkeit von der temperatur. Zeitschrift
für Phys. Chemie 43: 309-328.
Stergar,
J. & Maver, U. 2016. Review of aerogel-based materials in biomedical
applications. J. Sol-Gel Sci. Technol. 77: 738-752.
Swatloski,
R.P., Spear, S.K., Holbrey, J.D. & Rogers, R.D. 2002. Dissolution of
cellose with ionic liquids. J. Am. Chem. Soc. 124: 4974-4975.
Tamon,
H. & Ishizaka, H. 1999. Preparation of organic mesoporous gel by
supercritical/freeze drying. Dry. Technol. 17: 1653-1665.
Tamon,
H., Ishizaka, H., Yamamoto, T. & Suzuki, T. 2001. Freeze drying for
preparation of aerogel-like carbon. Dry. Technol. 19: 313-324.
Tamon,
H., Ishizaka, H., Mikami, M. & Okazaki, M. 1997. Porous structure of
organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol
with formaldehyde. Carbon 35: 791-796.
Liebert, T.F., Heinze,
T.J. & Edgar, K.J. 2010. Cellulose
Solvents: For Analysis, Shaping and Chemical Modification. ACS
Division of Cellulose and Renewable Materials.
VanBemmelen,
J.M. 1894. Der Hydrogel und das kristallinische Hydrat des Kupferoxydes. Zeitschrift
für Anorg. und Allg. Chemie 5: 466.
Vyas,
C., Poologasundarampillai, G., Hoyland, J. & Bartolo, P. 2017. 3D
Printing of Biocomposites for Osteochondral Tissue Engineering. 2nd ed.
Biomedical Composites. Elsevier Ltd.
Wang,
R., Shou, D., Lv, O., Kong, Y., Deng, L. & Shen, J. 2017. pH-Controlled
drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and
graphene oxide as the carrier. Int. J. Biol. Macromol. 103: 248-253.
Wang,
Y. 2008. Cellulose Fiber Dissolution in Sodium Hydroxide Solution at Low
Temperature: Dissolution Kinetics and Solubility Improvement. Georgia
Institute of Technology.
Wichterle,
O. & Lim, D. 1960. Hydrophilic gels for biological use. Nature 185:
117-129.
Wolfrom,
M.L. 1955. Advances in Carbohydrate Chemistry. New York: Acad. Press
Inc. p. 10.
Yahia,
L.H., Chirani, N., Gritsch, L., Motta, F.L. & Natta, C.G. 2015. History and
applications of hydrogels. iMedPub Journals 4: 1-23.
Yamasaki,
S., Sakuma, W., Yasui, H., Daicho, K., Saito, T., Fujisawa, S., Isogai, A.
& Kanamori, K. 2019. Nanocellulose xerogels with high porosities and large
specific surface areas. Front. Chem. 7: 1-8.
Zhang,
L., Ruan, D. & Gao, S. 2002. Dissolution and regeneration of cellulose in
NaOH/Thiourea aqueous solution. J. Polym. Sci. Part B Polym. Phys. 40:
1521-1529.
Zhou,
J. & Zhang, L. 2000. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J. 32: 866-870.
Zhou,
J., Chang, C., Zhang, R. & Zhang, L. 2007. Hydrogels prepared from
unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 7:
804-809.
Zhou,
J., Zhang, L. & Cai, J. 2004. Behavior of cellulose in NaOH/urea aqueous
solution characterized by light scattering and viscometry. J. Polym. Sci.
Part B Polym. Phys. 42: 347-353.
*Corresponding
author; email: szakaria@ukm.edu.my
|