Sains Malaysiana 50(10)(2021): 3127-3138
http://doi.org/10.17576/jsm-2021-5010-24
Impact of Al2O3 and Dy2O3 Substitution on the Physical, Structural and Radiation Shielding Properties of
Li2O-B2O3 Glass System
(Kesan PenggantianAl2O3 dan Dy2O3 pada Sifat Fizikal, Struktur dan Pelindung Radiasi Sistem KacaLi2O-B2O3)
O.B. ALJEWAW1,
M.K.A. KARIM2*, M.H.M. ZAID2,
M.K. HALIMAH2, N.M. NOOR2, M.H.A. MHAREB3,4 & Y.S. ALAJERAMI5,6
1Biotechnology
Research Centre, Tripoli, P.O. Box Tajoura 3031, Libya
2Department
of Physics, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department
of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O.
Box 1982, 31441 Dammam, Saudi Arabia
4Basic
and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University,
P.O. Box 1982, 31441, Dammam, Saudi Arabia
5Physics
and Astronomy, Science Faculty, Ohio University, USA
6Medical
Imaging Department, Applied Medical Sciences Faculty, Al Azhar University-Gaza
Received: 9 October 2020/Accepted: 3 February
2021
Abstract
A new series of lithium-borate
glass systems (23Li2O-72B2O3 in mol%) were
synthesized with the substitution of Al2O3 (5 mol.%) as a
modifier and doped with 0.3 and 0.5 mol% of Dy2O3. Four
series of glasses (S1, S2, S3 and S4) were synthesized via the conventional
melt-quenching technique and characterized by using UV-Visible-NIR absorption
spectrometer and Fourier transform infrared (FTIR) spectroscopy. The current
investigation gives further insight on the structural and optical properties of
the samples. The diffraction spectrum obtained from the X-ray Diffraction (XRD)
analysis shows no typical peaks in the glass system, which indicates its
amorphous phase. The optical properties of Al3+ and Dy3+ ions were evaluated and found that there is a pivot effect for the addition of
Al2O3 and Dy2O3 for the glass
system. Notably, the sample S2 shows different behaviours for physical,
structural, and optical properties compared with other prepared glass samples
that can be attributed to the increment of Al2O3.
Besides, the physical and ionizing shielding features were investigated for
current glass samples. The radiation shielding properties were examined within
the energy range of 0.015 until 15 MeV. The sample S4 has the optimum radiation
shielding features as a result of the addition of Dy2O3.
Hence, the composition attributes a new glass system that can be used in
various applications such as radiation dosimeter and photon shielding materials.
Keywords: Dysprosium oxide; lithium-aluminium-borate glasses;
radiation shielding properties; structural properties
ABSTRAK
Suatu siri baru sistem kaca litium-borat (23Li2O-72B2O3 dalam mol%) disintesis dengan penggantian Al2O3 (5 mol.%) sebagai pengubah suai dan terdop dengan 0.3 dan 0.5 mol% Dy2O3. Empat siri gelas (S1, S2, S3 dan S4) disintesis melalui teknik sepuh lindap konvensional dan dicirikan dengan menggunakan spektrometer penyerapan UV-boleh nampak-NIR dan spektroskopi inframerah transformasi Fourier
(FTIR). Kajian semasa memberikan gambaran lebih lanjut mengenai sifat struktur dan optik sampel. Spektrum belauan yang diperoleh dari analisis pembelauan sinar-X (XRD) tidak menunjukkan puncak khas dalam sistem kaca yang menunjukkan fasa amorfusnya. Sifat optik ion Al3+ dan Dy3+ dinilai dan didapati bahawa terdapat kesan pangsi pada penambahan Al2O3 dan Dy2O3 untuk sistem kaca. Terutama, sampel S2 menunjukkan tingkah laku yang berbeza untuk sifat fizikal, struktur dan optik berbanding dengan sampel kaca lain yang boleh dikaitkan dengan kenaikan Al2O3. Selain itu, ciri-ciri fizikal dan perlindungan mengion juga dikaji bagi setiap sampel kaca. Sifat pelindung diperiksa dalam julat tenaga dari 0.015 hingga 15 MeV. Sampel S4 mempunyai ciri pelindung yang optimum disebabkan penambahan Dy2O3. Oleh itu, komposisi mengaitkan sistem kaca baru yang dapat digunakan dalam pelbagai aplikasi seperti dosimeter radiasi dan bahan pelindungan foton.
Kata kunci: Disprosium oksida; gelas litium-aluminium-borat; pencirian perlindungan sinaran; pencirian struktur
REFERENCES
Alajerami,
Y.S., Drabold, D., Mhareb, M.H.A., Cimatu, K.L.A., Chen, G. & Kurudirek, M.
2020. Radiation shielding properties of bismuth borate glasses doped with
different concentrations of cadmium oxides. Ceramics International 46(8): 12718-12726. https://doi.org/10.1016/j.ceramint.2020.02.039.
Alajerami, Y.S.M., Mhareb, M.H.A.,
Abushab, K. & Ramadan, K. 2019. Effect of co-doping of lithium on the
dosimetric properties of dysprosium-doped sodium borate glass system. Physica
B: Condensed Matter 558(February): 142-145. https://doi.org/10.1016/j.physb.2019.01.046.
Bagheri, R., Khorrami Moghaddam, A.
& Yousefnia, H. 2017. Gamma ray shielding study of
barium–bismuth–borosilicate glasses as transparent shielding materials using
MCNP-4C Code, XCOM program, and available experimental data. Nuclear Engineering
and Technology 49(1): 216-223. https://doi.org/10.1016/j.net.2016.08.013.
Gedam, R.S. & Ramteke, D.D. 2012.
Electrical and optical properties of lithium borate glasses doped with Nd2O3. Journal of Rare Earths 30(8): 785-789. https://doi.org/10.1016/S1002-0721(12)60130-6.
Gomaa, H.M., Sayyed, M.I., Tekin,
H.O., Lakshminarayana, G. & EL-Dosokey, A.H. 2019. Correlate the structural
changes to gamma radiation shielding performance evaluation for some calcium
bismuth-borate glasses containing Nb2O5. Physica B:
Condensed Matter 567: 109-112. https://doi.org/10.1016/j.physb.2018.11.011.
Hashim, S., Mhareb, M.H.A., Ghoshal,
S.K., Alajerami, Y.S.M., Bradley, D.A., Saripan, M.I., Tamchek, N. &
Alzimami, K. 2015. Luminescence characteristics of Li2O-MgO-B2O3 doped with Dy3+ as a solid TL detector. Radiation Physics and
Chemistry 116: 138-141. https://doi.org/10.1016/j.radphyschem.2015.04.007.
Kaur, P., Singh, K.J., Thakur, S.,
Singh, P. & Bajwa, B.S. 2019. Investigation of bismuth borate glass system
modified with barium for structural and gamma-ray shielding properties. Spectrochimica
Acta - Part A: Molecular and Biomolecular Spectroscopy 206: 367-377.
https://doi.org/10.1016/j.saa.2018.08.038.
Khalilzadeh, N., Bin Saion, E.,
Mirabolghasemi, H., Soltani, N., Bin Shaari, A.H., Bin Hashim, M., Mod Ali, N.
& Dehzangi, A. 2016a. Formation and characterization of ultrafine
nanophosphors of lithium tetraborate (Li2B4O7)
for personnel and medical dosimetry. Journal of Materials Research and
Technology 5(3): 206-212. https://doi.org/10.1016/j.jmrt.2015.11.002.
Khalilzadeh, N., Saion, E. Bin,
Mirabolghasemi, H., Shaari, A.H. Bin, Hashim, M. Bin, Ahmad, M.B.H., Mod Ali,
N. & Dehzangi, A. 2016b. Single step thermal treatment synthesis and
characterization of lithium tetraborate nanophosphor. Journal of Materials
Research and Technology 5(1): 37-44.
https://doi.org/10.1016/j.jmrt.2015.05.005.
Kumar, M.V.S., Rajesh, D.,
Balakrishna, A. & Ratnakaram, Y.C. 2013. Optical absorption and
photoluminescence properties of Dy3+ doped heavy metal borate
glasses - Effect of modifier oxides. Journal of Molecular Structure 1041: 100-105. https://doi.org/10.1016/j.molstruc.2013.03.009
Kurudirek, M. 2014. Photon buildup
factors in some dosimetric materials for heterogeneous radiation sources. Radiation
and Environmental Biophysics 53: 175-185.
https://doi.org/10.1007/s00411-013-0502-9.
Lakshminarayana, G., Baki, S.O.,
Kaky, K.M., Sayyed, M.I., Tekin, H.O., Lira, A., Kityk, I.V. & Mahdi, M.A.
2017a. Investigation of structural, thermal properties and shielding parameters
for multicomponent borate glasses for gamma and neutron radiation shielding
applications. Journal of Non-Crystalline Solids 471: 222-237.
https://doi.org/10.1016/j.jnoncrysol.2017.06.001.
Lakshminarayana, G., Baki, S.O.,
Lira, A., Sayyed, M.I., Kityk, I.V., Halimah, M.K. & Mahdi, M.A. 2017b.
X-ray photoelectron spectroscopy (XPS) and radiation shielding parameters
investigations for zinc molybdenum borotellurite glasses containing different
network modifiers. Journal of Materials Science 52: 7394-7414.
https://doi.org/10.1007/s10853-017-0974-0.
Limkitjaroenporn, P., Kaewkhao, J.,
Limsuwan, P. & Chewpraditkul, W. 2011. Physical, optical, structural and
gamma-ray shielding properties of lead sodium borate glasses. Journal of
Physics and Chemistry of Solids 72(4): 245-251.
https://doi.org/10.1016/j.jpcs.2011.01.007.
Mann, K.S. & Korkut, T. 2013.
Gamma-ray buildup factors study for deep penetration in some silicates. Annals
of Nuclear Energy 51: 81-93. https://doi.org/10.1016/j.anucene.2012.08.024.
Mhareb, M.H.A. 2020. Physical,
optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Applied Physics A:
Materials Science and Processing 126: 71. https://doi.org/10.1007/s00339-019-3262-9.
Mhareb, M.H.A., Almessiere, M.A.,
Sayyed, M.I. & Alajerami, Y.S.M. 2019. Physical, structural, optical and
photons attenuation attributes of lithium-magnesium-borate glasses: Role of Tm2O3 doping. Optik 182: 821-831. https://doi.org/10.1016/j.ijleo.2019.01.111.
Mhareb, M.H.A., Hashim, S., Ghoshal,
S.K., Alajerami, Y.S.M., Bqoor, M.J., Hamdan, A.I., Saleh, M.A. & Abdul
Karim, M.K.B. 2016. Effect of Dy2O3impurities on the
physical, optical and thermoluminescence properties of lithium borate glass. Journal
of Luminescence 177: 366-372. https://doi.org/10.1016/j.jlumin.2016.05.002.
Mhareb, M.H.A., Hashim, S., Ghoshal,
S.K., Alajerami, Y.S.M., Saleh, M.A., Dawaud, R.S. & Azizan, S.A.B. 2014.
Impact of Nd3+ ions on physical and optical properties of lithium
magnesium borate glass. Optical Materials 37: 391-397.
https://doi.org/10.1016/j.optmat.2014.06.033.
Mostafa, A.M.A., Issa, S.A.M. &
Sayyed, M.I. 2017. Gamma ray shielding properties of PbO-B2O3-P2O5 doped with WO3. Journal of Alloys and Compounds 708: 294-300.
https://doi.org/10.1016/j.jallcom.2017.02.303.
Okasha, A., Abdelghany, A.M. &
Marzouk, S.Y. 2020. The influence of Ba2+ and Sr2+ ions
with the Dy3+ ions on the optical properties of lead borate glasses:
Experimental and Judd-Ofelt comparative study. Journal of Materials Research
and Technology 9(1): 59-66. https://doi.org/10.1016/j.jmrt.2019.10.029.
Raghda Saeif Eddin Said Dawaud,
Suhairul Hashim, Yasser Saleh Mustafa Alajerami, Mhareb, M.H.A. & Tamchek.
N. 2014. Optical and structural properties of lithium sodium borate glasses
doped Dy3+ ions. Journal of Molecular Structure 1075:
113-117. https://doi.org/10.1016/j.molstruc.2014.06.032.
Ramteke, D.D., Annapurna, K.,
Deshpande, V.K. & Gedam, R.S. 2014. Effect of Nd3+ on
spectroscopic properties of lithium borate glasses. Journal of Rare Earths 32(12): 1148-1153. https://doi.org/10.1016/S1002-0721(14)60196-4.
Şakar, E., Özpolat, Ö.F.,
Alım, B., Sayyed, M.I. & Kurudirek, M. 2020. Phy-X/PSD: Development of
a user friendly online software for calculation of parameters relevant to
radiation shielding and dosimetry. Radiation Physics and Chemistry 166:
108496. https://doi.org/10.1016/j.radphyschem.2019.108496.
Sayyed, M.I., Kaky, K.M., Şakar,
E., Akbaba, U., Taki, M.M. & Agar, O. 2019. Gamma radiation shielding
investigations for selected germanate glasses. Journal of Non-Crystalline
Solids 512: 33-40.
https://doi.org/10.1016/j.jnoncrysol.2019.02.014.
Sayyed, M.I., Mhareb, M.H.A., Abbas,
Z.Y., Almousa, N., Laariedh, F., Kaky, K.M. & Baki, S.O. 2019. Structural,
optical, and shielding investigations of TeO2–GeO2–ZnO–Li2O–Bi2O3 glass system for radiation protection applications. Applied Physics A:
Materials Science and Processing.
https://doi.org/10.1007/s00339-019-2709-3.
Yasser Saleh Mustafa Alajerami,
Suhairul Hashim, Ahmad Termizi Ramli, Muneer Aziz Saleh & Taiman Kadni.
2013. Thermoluminescence characteristics of the Li2CO3–K2CO3–H3BO3 glass system co-doped with CuO and MgO. Journal of Luminescence 143:
1-4. https://doi.org/10.1016/j.jlumin.2013.04.023.
Yasser Saleh Mustafa Alajerami,
Suhairul Hashim, Wan Muhamad Saridan Wan Hassan, Ahmad Termizi Ramli &
Azman Kasim. 2012. Optical properties of lithium magnesium borate glasses doped
with Dy3+ and Sm3+ ions. Physica B: Condensed Matter 407(13): 2398-2403. https://doi.org/10.1016/j.physb.2012.03.033.
*Corresponding author; email: mkhalis@upm.edu.my
|