Sains Malaysiana 50(10)(2021):
3139-3152
http://doi.org/10.17576/jsm-2021-5010-25
Oblique
Stagnation-Point Flow Past a Shrinking Surface in a Cu-Al2O3/H2O
Hybrid Nanofluid
(Aliran Titik Genangan Serong Nanobendalir Hibrid Cu-Al2O3/H2O terhadap Permukaan Mengecut)
RUSYA IRYANTI YAHAYA1,
NORIHAN MD ARIFIN1,2*, ROSLINDA MOHD. NAZAR3 & IOAN
POP4
1Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Mathematics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3School of Mathematical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
4Department of Mathematics, Babe¸s-Bolyai University, 400084 Cluj-Napoca, Romania
Received: 12 October 2020/Accepted:
2 February 2021
ABSTRACT
To fill the existing literature gap, the
numerical solutions for the oblique stagnation-point flow of Cu-Al2O3/H2O
hybrid nanofluid past a shrinking surface are computed and analyzed. The
computation, using similarity transformation and bvp4c solver, results in dual
solutions. Stability analysis then shows that the first solution is stable with
positive smallest eigenvalues. Besides that, the addition of Al2O3 nanoparticles into the Cu-H2O nanofluid is found to reduce the skin
friction coefficient by 37.753% while enhances the local Nusselt number by
4.798%. The increase in the shrinking parameter reduces the velocity profile
but increases the temperature profile of the hybrid nanofluid. Meanwhile, the
increase in the free parameter related to the shear flow reduces the oblique
flow skin friction.
Keywords: Dual solutions; hybrid nanofluid;
oblique stagnation-point; shrinking surface; stability analysis
ABSTRAK
Bagi memenuhi jurang kepustakaan sedia ada, penyelesaian numerik bagi aliran titik genangan serong nanobendalir hibrid Cu-Al2O3/H2O terhadap permukaan mengecut telah dihitung dan dianalisis. Pengiraan menggunakan penjelmaan keserupaan dan fungsi bvp4c telah menghasilkan penyelesaian dual.
Hasil analisis kestabilan menunjukkan bahawa penyelesaian pertama adalah stabil dengan nilai eigen terkecil positif. Secara puratanya, penambahan nanozarah Al2O3 ke dalam nanobendalir Cu-H2O telah mengurangkan pekali geseran kulit sebanyak 37.753% dan meningkatkan nombor Nusselt tempatan sebanyak 4.798%. Peningkatan parameter mengecut pula dilihat mengurangkan profil halaju nanobendalir hibrid tetapi menyebabkan profil suhunya meningkat. Sementara itu, peningkatan nilai parameter bebas berkaitan aliran sesar telah mengurangkan geseran kulit aliran serong.
Kata kunci: Aliran titik genangan serong; analisis kestabilan; nanobendalir hibrid; penyelesaian dual; permukaan mengecut
REFERENCES
Awaludin, I.S., Weidman, P.D. & Ishak, A. 2016. Stability
analysis of stagnation-point flow over a stretching/shrinking sheet. AIP
Advances 6(4): 045308-1-045308-7.
Devi,
S.P.A. & Devi, S.S.U. 2016. Numerical investigation of hydromagnetic hybrid
Cu–Al2O3/water nanofluid flow over a
permeable stretching sheet with suction. International Journal of Nonlinear
Sciences and Numerical Simulation 17(5): 249-257.
Devi,
S.U. & Devi, S.A. 2017. Heat transfer enhancement of Cu-Al2O3/water
hybrid nanofluid flow over a stretching sheet. Journal of the
Nigerian Mathematical Society 36(2): 419-433.
Dorrepaal, J.M. 1986. An exact solution of the Navier-Stokes equation which describes non-orthogonal
stagnation-point flow in two dimensions. Journal of Fluid Mechanics 163:
141-147.
Drazin, P.G. & Riley, N. 2006. The Navier-Stokes
Equations: A Classification of Flows and Exact Solutions. Volume 13. Cambridge: Cambridge
University Press.
Dzulkifli, N.F., Bachok, N., Yacob, N.A., Md Arifin, N. & Rosali,
H. 2018. Unsteady stagnation-point flow and heat transfer over a permeable
exponential stretching/shrinking sheet in nanofluid with slip velocity effect:
A stability analysis. Applied Sciences 8(11): 2172.
Ghaffari, A., Javed, T. & Labropulu, F. 2017. Oblique stagnation point flow of a non-newtonian nanofluid over stretching surface with radiation:
A numerical study. Thermal Science 21(5): 2139-2153.
Gökhan, F.S. 2011. Effect of the guess function &
continuation method on the run time of matlab bvp solvers. MATLAB-A Ubiquitous Tool for the Practical
Engineer. IntechOpen.
Grosan, T., Pop, I., Revnic, C. & Ingham, D.B.
2009. Magnetohydrodynamic oblique stagnation-point flow. Meccanica 44(5): 565.
Harris,
S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer
flow near the stagnation point on a vertical surface in a porous medium:
Brinkman model with slip. Transport in Porous Media 77(2): 267-285.
Hayat,
T., Nadeem, S. & Khan, A.U. 2018. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation
and partial slip boundary effects. The European Physical Journal E 41(6): 75.
Hiemenz, K. 1911. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnisches Journal 326: 321-324.
Jamaludin, A., Naganthran, K., Nazar, R. & Pop, I. 2020. MHD mixed convection
stagnation-point flow of cu-al2o3/water hybrid nanofluid over a permeable
stretching/shrinking surface with heat source/sink. European Journal of
Mechanics-B/Fluids 84: 71-80.
Kadhim, H.T., Jabbar, F.A. & Rona, A. 2020. Cu-Al2O3 hybrid nanofluid natural convection in an inclined enclosure with wavy walls
partially layered by porous medium. International Journal of Mechanical
Sciences 186: 105889.
Kamal,
F.A., Zaimi, K., Ishak, A. & Pop, I. 2019.
Stability analysis of MHD stagnation-point flow towards a permeable
stretching/shrinking sheet in a nanofluid with chemical reactions effect. Sains Malaysiana 48(1): 243-250.
Khashi’ie, N.S., Md Arifin, N., Pop, I., Nazar,
R., Hafidzuddin, E.H. & Wahi,
N. 2020. Thermal marangoni flow past a permeable
stretching/shrinking sheet in a hybrid Cu-Al2O3/water
nanofluid. Sains Malaysiana 49(1): 211-222.
Khashi’ie, N.S., Md Arifin, N., Nazar,
R., Hafidzuddin, E.H., Wahi,
N. & Pop, I.A. 2019. Stability analysis for magnetohydrodynamics stagnation
point flow with zero nanoparticles flux condition and anisotropic slip. Energies 12(7): 1268.
Labropulu, F. & Li, D. 2008. Stagnation-point flow of a
second-grade fluid with slip. International Journal of Non-Linear Mechanics 43(9): 941-947.
Li, D., Labropulu, F. & Pop, I. 2009. Oblique stagnation-point
flow of a viscoelastic fluid with heat transfer. International Journal of
Non-Linear Mechanics 44(10): 1024-1030.
Lok,
Y.Y., Mohd Ishak, A. & Pop, I. 2018. Oblique
stagnation slip flow of a micropolar fluid towards a stretching/shrinking
surface: A stability analysis. Chinese Journal of Physics 56(6):
3062-3072.
Lok,
Y.Y., Merkin, J.H. & Pop, I. 2015. MHD oblique
stagnation-point flow towards a stretching/shrinking surface. Meccanica 50(12): 2949-2961.
Lok,
Y.Y., Pop, I., Ingham, D.B. & Amin, N. 2009. Mixed convection flow of a
micropolar fluid near a non-orthogonal stagnation-point on a stretching
vertical sheet. International Journal of Numerical Methods for Heat &
Fluid Flow 19(3/4): 459-483.
Mahapatra,
T.R. & Gupta, A.S. 2002. Heat transfer in stagnation-point flow towards a
stretching sheet. Heat and Mass transfer 38(6): 517-521.
Mahmood,
K., Sajid, M., Ali, N., Arshad, A. & Rana, M.A. 2017. Effects of
lubrication in the oblique stagnation-point flow of a nanofluid. Microfluidics
and Nanofluidics 21(5): 100.
Nadeem,
S., Ullah, N. & Khan, A.U. 2019. Impact of oblique stagnation point on MHD
micropolar nanomaterial in porous medium over an oscillatory surface with
partial slip. Physica Scripta 94(6): 065209.
Naganthran, K., Mohd. Nazar, R. & Pop, I. 2017. Stability analysis of
impinging oblique stagnation-point flow over a permeable shrinking surface in a
viscoelastic fluid. International Journal of Mechanical Sciences 131-132: 663-671.
Rahman,
M.M., Grosan, T. & Pop, I. 2016. Oblique
stagnation-point flow of a nanofluid past a shrinking sheet. International
Journal of Numerical Methods for Heat & Fluid Flow 26(1): 189-213.
Reza, M.
& Gupta, A.S. 2010. Some aspects of non-orthogonal stagnation-point flow
towards a stretching surface. Engineering 2: 705-709.
Rosca, N.C., Grosan, T. & Pop, I. 2012.
Stagnation-point flow and mass transfer with chemical reaction past a permeable
stretching/shrinking sheet in a nanofluid. Sains Malaysiana 41(10): 1271-1279.
Sadiq,
M.A. 2019. MHD stagnation point flow of nanofluid on a plate with anisotropic
slip. Symmetry 11: 132.
Sidik, N.A.C., Adamu, I.M., Jamil, M.M., Kefayati, G.H.R., Mamat, R. &
Najafi, G. 2016. Recent progress on hybrid nanofluids in heat
transfer applications: A comprehensive review. International Communications
in Heat and Mass Transfer 78: 68-79.
Stuart,
J.T. 1959. The viscous flow near a stagnation point when the external flow has
uniform vorticity. Journal of the Aerospace Sciences 26(2): 124-125.
Suresh,
S., Venkitaraj, K.P., Selvakumar,
P. & Chandrasekar, M. 2012. Effect of Al2O3–Cu/water
hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science 38: 54-60.
Tamada, K. 1979. Two-dimensional stagnation-point flow impinging obliquely on
a plane wall. Journal of the Physical Society of Japan 46(1): 310-311.
Tooke,
R.M. & Blyth, M.G. 2008. A note on oblique stagnation-point flow. Physics
of Fluids 20(3): 033101.
Turcu, R., Darabont, A., Nan, A., Aldea, N.,
Macovei, D., Bica, D., Vekas,
L., Pana, O., Soran, M., Koos,
A. & Biró, L. 2006. New polypyrrole-multiwall
carbon nanotubes hybrid materials. Journal of Optoelectronics and Advanced
Materials 8(2): 643-647.
Waini, I., Ishak, A. & Pop, I. 2020. Flow and heat transfer of a hybrid
nanofluid past a permeable moving surface. Chinese Journal of Physics 66: 606-619.
Waini, I., Mohd Ishak, A. & Pop, I. 2019.
Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid
nanofluid. International Journal of Heat and Mass Transfer 136: 288-297.
Wang,
C.Y. 1985. The unsteady oblique stagnation point flow. The Physics of Fluids 28(7): 2046-2049.
Weidman,
P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The
effect of transpiration on self-similar boundary layer flow over moving
surfaces. International Journal of Engineering Science 44: 730-737.
*Corresponding author; email:
norihanarifin@yahoo.com
|