Sains Malaysiana 50(11)(2021):
3171-3179
http://doi.org/10.17576/jsm-2021-5011-02
Impacts of κ-Oligocarrageenan
Application on Photosynthesis, Nutrient Uptake and Bean Yield of Coffee (Coffea robusta)
(Kesan Pengaplikasian κ-Oligokaragenan pada Fotosintesis,
Pengambilan Nutrien dan Hasil Biji Kopi (Coffea
robusta))
PHAM TRUNG SAN1, CHAU MINH KHANH1,
HUYNH HOANG NHU KHANH1*, TRUONG ANH KHOA1, NGUYEN HOANG1,
PHAM DUC THINH1 & THANH-DANH NGUYEN2
1NhaTrang Institute of Technology Research and
Application, Vietnam Academy of Science and Technology, NhaTrang City, Vietnam
2Institute of Chemical Technology, Vietnam Academy of
Science and Technology, Ho Chi Minh City
Vietnam
Received: 13 September 2020/Accepted: 11
March 2021
ABSTRACT
κ-Oligocarrgeenan
(OC) is well known as an effective and green plant growth promoter and
elicitor. However, its effect on coffee plant has not been investigated so
far. This study aimed
to examine the impacts of OC on biophysical activity, vegetative growth and productivity of coffee
plant (Coffea robusta). OC with average molecular weight (AMW) of 4.0 kDa was
prepared by depolymerization of carrageenan using ascorbic acid. Field
experiments were conducted by foliar spray four times per year at various OC
concentrations (50, 100, 150, 200, and 250 ppm) for three years (2017-2019).
The results showed that OC promoted growth of coffee plant in all tested
concentrations, and an optimized concentration was found at 150 ppm which
showed a significant increase compared to the control plant in total
chlorophyll (24.79%), carotenoid (31.65%), uptakes of N (15.66%), P (15.81%),
and K (22.25%) minerals in leaves, crop yield (19.80%) and bean size (13.10%).
Therefore, OC is potentially promising to apply as a promoter to enhance yield
of crops for sustainable
coffee plantation.
Keywords: Bean yield; coffee plant; concentration;
oligocarrageenan; promoter
ABSTRAK
κ-Oligokaragenan
(OC) terkenal sebagai penggalak pertumbuhan tanaman hijau dan pengelisit yang
berkesan. Walau bagaimanapun, kesannya terhadap kilang kopi belum dikaji
setakat ini. Kajian ini bertujuan untuk mengkaji kesan OC terhadap aktiviti
biofizik, pertumbuhan vegetatif dan produktiviti tanaman kopi (Coffea robusta). OC dengan berat molekul purata (AMW) 4.0 kDa disediakan dengan
penceraian polimer karagenan menggunakan asid askorbik. Uji kaji lapangan dilakukan
dengan semburan daun empat kali setahun pada pelbagai kepekatan OC (50, 100,
150, 200 dan 250 ppm) selama tiga tahun (2017-2019). Hasil kajian menunjukkan
bahawa OC mendorong pertumbuhan tanaman kopi pada semua kepekatan yang diuji
dan kepekatan yang optimum didapati pada 150 ppm yang menunjukkan peningkatan
yang signifikan berbanding kilang kawalan dalam mineral jumlah klorofil
(24.79%), karotenoid (31.65%), pengambilan N (15.66%), P (15.81%) dan K
(22.25%) dalam daun, hasil tanaman (19.80%) dan saiz kacang (13.10%). Oleh itu,
OC berpotensi untuk diterapkan sebagai penggalak untuk meningkatkan hasil
tanaman perkebunan kopi lestari.
Kata
kunci: Hasil kacang; kepekatan; kilang kopi; oligokaragenan; penggalak
REFERENCES
Abad, L.V., Aurigue, F.B., Montefalcon,
D.R.V., Manguiat, P.H., Carandang, F.F., Mabborang, S.A., Hizon, M.G.S. &
Abella, M.E.S. 2018a. Effect of radiation-modified kappa-carrageenan as plant
growth promoter on peanut (Arachis
hypogaea L.). Radiat. Phys. Chem. 153: 239-244.
Abad, L.V., Dean, G.F.O., Magsino, G.L.,
Cruz, R.M.M.D., Tecson, M.G., Abella, M.E.S. & Hizon, M.G.S. 2018b.
Semi-commercial scale production of carrageenan plant growth promoter by E-beam
technology. Radiat. Phys. Chem. 143:
53-58.
Abad, L.V., Aurigue, F.B., Relleve, L.S.,
Montefalcon, D.R.V. & Lopez, G.E.P. 2016. Characterization of low molecular
weight fragments from gamma irradiated κ-carrageenan used as plant growth
promoter. Radiat. Phys. Chem. 118:
75-80.
Ahmad, B., Jahan, A., Sadiq, Y., Shabbir,
A., Jaleel, H. & Khan, M.M.A. 2019. Radiation-mediated molecular weight
reduction and structural modification in carrageenan potentiates improved
photosynthesis and secondary metabolism in peppermint (Mentha piperita L.). Inter.
J. Biol. Macromol. 124:
1069-1079.
Bi, F., Iqbal, S., Arman, M., Ali, A. &
Hassan, M. 2011. Carrageenan as an elicitor of induced secondary metabolites
and its effects on various growth characters of chickpea and maize plants. J. Saudi Chem. Soc. 15: 269-273.
Bongalos, J., Duna, L., Tigbao, J. &
Aurigue, F. 2019. Radiation-modified kappa-carrageenan improves productivity of
peanut (Arachis hypogaea L.) in
Bukidnon, northern Mindanao, Philippines. Philip.
J. Sci. 149: 101-105.
Campanha, M.M., Santos, R.H.S.,
Freitas, G.B.D., Martinez, H.E.P., Garcia, S.L.R. & Finger, F.L.
2004. Growth and yield of coffee plants in agroforestry and monoculture systems
in Minas Gerais, Brazil. Agrofor. Syst. 63: 75-82.
Carroll, M.J., Slaughter, L.H. &
Krouse, J.M. 1994. Turgor potential and osmotic constituents of Kentucky
bluegrass leaves supplied with four levels of potassium. Agron. J. 86: 1079-1083.
Castro, J., Vera, J., González, A. &
Moenne, A. 2012. Oligo-carrageenans stimulate growth by enhancing
photosynthesis, basal metabolism, and cell cycle in tobacco plants (var.
Burley). J. Plant Growth Regul. 31:
173-185.
Chapman, H.D. & Pratt, P.F. 1962.
Methods of analysis for soils, plants and waters. Soil Sci. 93: 68.
Cottenie, A., Verloo, M. & Kiekens, L.
1982. Chemical Analysis of Plants and
Soils. Gent: RUG. Laboratory of Analytical and Agrochemistry. p. 63.
Dias, K.G.D.L., Guimarães, P.T.G., Neto, A.E.F., Silveira, H.R.O.D. & Lacerda, J.J.D.J. 2017. Effect of magnesium on gas
exchange and photosynthetic efficiency of coffee plants grown under different
light levels. Agriculture 7(10): 85.
Dzung, N.A., Khanh, V.T.P. & Dzung,
T.T. 2011. Research on impact of chitosan oligomers on biophysical
characteristics, growth, development and drought resistance of coffee. Carbohydr. Polym. 84: 751-755.
Gatan, M.G.B., Recto, D., Montefalcon, V.,
Aurigue, F.B. & Abad, L.V. 2019. Effect of radiation modified kappa
carrageenan on mungbean. Philip. J. Sci. 149: 35-143.
German, P.U.J., Rey, C.N., Fredisminda,
M.D., Matt, E.S.A., Mark, G.S.H. & Sancho, A.M. 2020. Effects of radiation
modified kappa carrageenans supplemention in corn (Zea mays L.). J. Crit. Rev. 7: 6-8.
González, A., Contreras, R.A. & Moenne,
A. 2013. Oligo-carrageenans enhance growth and contents of cellulose, essential
oils and polyphenolic compounds in Eucalyptus
globulus trees. Molecules 18:
8740-8751.
Guilli, M.E., Hamza, A., Clément, C., Ibriz, M. & Barka, E.A. 2016. Effectiveness of postharvest
treatment with chitosan to control citrus green mold. Agriculture 6(2): 12.
Jaramillo-Botero, C., Santos, R.H.S.,
Martinez, H.E.P., Cecon, P.R. & Fardin, M.P. 2010. Production and
vegetative growth of coffee trees under fertilization and shade levels. Sci. Agric. (Piracicaba, Braz.) 67:
639-645.
Moran, R. 1982. Formulae for determination
of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 69: 1376.
Munoz, A.M., Ponce, J.C. & Araya, J.V.
2011. Method to stimulate carbon fixation in plants with an aqueous solution of
oligocarrageenans selected from kappa1, kappa2, lambda or iota, US patent,
US20110099898A1.
Naeem, M., Idrees, M., Aftab, T.,
Moinuddin, A.S. & Varshney, L. 2012. Depolymerised carrageenan enhances
physiological activities and menthol production in Mentha arvensis L. Carbohydr.
Polym. 87: 1211-1218.
Salamanca-Jimenez, A., Doane, T.A. &
Horwath, W.R. 2017. Nitrogen use efficiency of coffee at the vegetative stage
as influenced by fertilizer application method. Front. Plant Sci. 8: 223-223.
Salachna, P., Grzeszczuk, M., Meller, E.
& Soból, M. 2018. Oligo-alginate with low molecular mass improves growth
and physiological activity of Eucomis
autumnalis under salinity stress. Molecules 23(4): 812.
San, P.T., Khanh, C.M., Khanh, H.H.N.,
Khoa, T.A., Hoang, N., Nhung, L.T., Trinh, N.T.K. & Nguyen, T.D. 2020. k-Oligocarrageenan promoting growth of
hybrid maize: Influence of molecular weight. Molecules 25(17):
3825.
Saucedo, S., Contreras, R.A. & Moenne,
A. 2015. Oligo-carrageenan kappa increases C, N and S assimilation, auxin and
gibberellin contents, and growth in Pinus
radiata trees. J. For. Res. 26:
635-640.
Singh, M., Khan, M.M., Uddin, M., Naeem, M.
& Qureshi, M.I. 2017. Proliferating effect of radiolytically depolymerized
carrageenan on physiological attributes, plant water relation parameters,
essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress. PLoS ONE 12: e0180129.
Stadnik, M.J. & Freitas, M.B.D. 2014.
Algal polysaccharides as source of plant resistance inducers. Trop. Plant Pathol. 39: 111-118.
Walling, L.L. 2000. The myriad plant
responses to herbivores. J. Plant Growth
Regul. 19: 195-216.
Xia, W., Liu, P., Zhang, J. & Chen, J.
2011. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 25: 170-179.
Xu, L. & Geelen, D. 2018. Developing
biostimulants from agro-food and industrial by-products. Front. Plant Sci. 9: 1567.
Zulfiqar, F., Casadesús, A., Brockman, H.
& Munné-Bosch, S. 2020. An overview of plant-based natural biostimulants
for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 295: 110194.
*Corresponding author; email: khanhhuynh@nitra.vast.vn
|