Sains Malaysiana 50(11)(2021): 3193-3204
http://doi.org/10.17576/jsm-2021-5011-04
Extracting
Crown Morphology with a Low-Cost Mobile LiDAR Scanning System in the Natural
Environment
(Mengekstrak Morfologi Silara dengan
Sistem Pengimbasan LiDAR Mudah Alih Kos Rendah pada Alam Sekitar Semula Jadi)
KAI WANG1, JUN ZHOU2*,
WENHAI ZHANG1 & BAOHUA ZHANG1
1College of Engineering, Nanjing Agricultural University,
Nanjing 210031, China
2Jiangsu Province Key Laboratory of Intelligent Agricultural
Equipment, Nanjing 210031, China
Received:
16 August 2020/Accepted: 7 March 2021
ABSTRACT
To meet the demand for intelligent
measurements of canopy morphological parameters, a mobile LiDAR scanning system
with LiDAR and IMU as the main sensors was constructed. The system uses a
LiDAR-IMU tight coupling odometry method to reconstruct a point cloud map of
the area surveyed. After using the RANSAC algorithm to remove the map ground,
the European clustering algorithm is used for point cloud segmentation.
Finally, morphological parameters of the canopy, such as crown height, crown
diameter, and crown volume, are extracted using statistical and voxel methods.
To verify the algorithm, a total of 43 trees in multiple plots of the campus
were tested and compared. The algorithm defined in this study was evaluated
with manual measurements as reference, and the morphological parameters of the
canopy obtained using the LOAM and LeGO-LOAM algorithms as the basic framework
were compared. Experiments show that this method can be used to easily obtain
the crown height, crown diameter, and crown volume of the area; the correlation
coefficients of these parameters were 0.91, 0.87, and 0.83, respectively.
Compared with the LOAM and LeGO-LOAM methods, they were increased by 0.004,
0.12, and 0.13 and 0.07, 0.15, and 0.04, respectively. The test results for
this new system are positive and meet the requirements of horticulture and
orchard measurements, indicating that it will have significant value as an
application.
Keywords: Canopy measurement; mobile
LiDAR scanning system; point cloud segmentation; tightly-coupled odometry
ABSTRAK
Bagi
memenuhi permintaan untuk pengukuran parameter morfologi kanopi yang cerdas,
sistem pengimbasan LiDAR mudah alih dengan LiDAR dan IMU sebagai sensor utama
telah dibina. Sistem ini menggunakan kaedah odometri gandingan erat LiDAR-IMU
untuk menyusun semula peta awan titik kawasan yang dikaji. Setelah menggunakan
algoritma RANSAC untuk menghilangkan landasan peta, algoritma pengelompokan
Eropah digunakan untuk segmentasi awan titik. Akhirnya, parameter morfologi
kanopi, seperti tinggi silara, diameter silara dan isi padu silara, diekstrak
menggunakan kaedah statistik dan voksel. Untuk mengesahkan algoritma, sebanyak
43 pokok di beberapa petak kampus diuji dan dibandingkan. Algoritma yang
ditentukan dalam kajian ini dinilai dengan pengukuran manual sebagai rujukan
dan parameter morfologi kanopi yang diperoleh menggunakan algoritma LOAM dan
LeGO-LOAM sebagai kerangka asas dibandingkan. Uji kaji menunjukkan bahawa
kaedah ini dapat digunakan untuk mendapatkan ketinggian silara, diameter silara
dan isi padu silara dengan mudah; pekali korelasi parameter ini masing-masing
0.91, 0.87 dan 0.83. Berbanding dengan kaedah LOAM dan LeGO-LOAM, mereka
masing-masing dinaikkan sebanyak 0.004, 0.12 dan 0.13 dan 0.07, 0.15 dan 0.04.
Hasil ujian untuk sistem baru ini adalah positif dan memenuhi syarat pengukuran
hortikultur dan kebun yang menunjukkan bahawa ia akan memiliki nilai yang
signifikan sebagai aplikasi.
Kata
kunci: Odometri gandingan erat; pengukuran kanopi; sistem pengimbasan LiDAR
mudah alih; titik segmentasi awan
REFERENCES
Agarwal, S., Mierle, K. & Others. 2018. Ceres Solver.
http://ceres-solver.org/.
Davison, S., Donoghue, D.N.M. & Galiatsatos, N. 2020.
The effect of leaf-on and leaf-off forest canopy conditions on LiDAR derived
estimations of forest structural diversity. International
Journal of Applied Earth Observation and Geoinformation 92: 102160.
Dong, Y., Li, Y., Li, Y., Li, P. & L, Y. 2018. Tree
crown outline point extracting and volume calculation based on improved convex
hull algorithm. Engineering of Surveying
and Mapping 27: 66-71.
Escolà, A., Martínez-Casasnovas, J.A., Rufat, J., Arnó, J.,
Arbonés, A., Sebé, F., Pascual, M., Gregorio, E. & Rosell-Polo, J.R. 2016.
Mobile terrestrial laser scanner applications in precision
fruticulture/horticulture and tools to extract information from canopy point
clouds. Precision Agriculture 18:
111-132.
Fan, Z., Feng, Z., Zheng, J., Fan, J., Yan, F. & Qiu, Z.
2015. Tree crown volume calculation and prediction model establishment using
cubic lattice method. Transactions of the
Chinese Society for Agricultural Machinery 46(3): 321-327.
Hadas, E., Jozkow, G., Walicka, A. & Borkowski, A. 2019.
Apple orchard inventory with a LiDAR equipped unmanned aerial system. International Journal of Applied Earth
Observation and Geoinformation 82: 101911.
Langning, H. & Xiaoli, Z. 2019. A new method of
equiangular sectorial voxelization of single-scan terrestrial laser scanning
data and its applications in forest defoliation estimation. ISPRS Journal of Photogrammetry and Remote
Sensing 151: 302-312.
Li, Q., Zheng, J., Zhou, H., Zhang, H., Shu, Y. & Xu, B.
2016. Online measurement of tree canopy volume using vehicle-borne 2-D laser
scanning. Transactions of the Chinese
Society for Agricultural Machinery 47: 310-314.
Pedersen, K., Hulusic, V., Amelidis, P. & Slattery, T.
2020. Spatialised audio in a custom-built openGL-based ear training virtual
environment. IEEE Computer Graphics and
Applications 4(5): 67-81.
Pfeiffer, A.S., Guevara, J., Cheein, F.A. & Sanz, R.
2018. Mechatronic terrestrial LiDAR for canopy porosity and crown surface
estimation. Computers and Electronics in
Agriculture 146: 104-113.
Pierzchała, M., Giguère, P. & Astrup, R. 2018.
Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Computers and Electronics in Agriculture 145: 217-225.
Qian, X. & Ye, C. 2014. NCC-RANSAC: A fast plane
extraction method for 3-D range data segmentation. IEEE Trans 44(12): 2771-2783.
Qin, T., Li, P. & Shen, S. 2018. Vins-mono: A robust and
versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics 34(4): 1004-1020.
Qin, C., Ye, H., Pranata, C.E., Han, J., Zhang, S. &
Liu, M. 2020. RLINS: A robocentric lidar-inertial state estimator for robust
and efficient navigation. 2020 IEEE
International Conference on Robotics and Automation (ICRA). pp. 8899-8906.
Rahul, K., Raheman, H. & Paradkar, V. 2020. Design of a
4 DOF parallel robot arm and the firmware implementation on embedded system to
transplant pot seedlings. Artificial
Intelligence in Agriculture 4: 172-183.
Rusu, R.B. & Cousins, S. 2011. Point cloud library
(pcl). Proceedings of the 2011 IEEE
International Conference on Robotics and Automation. pp. 1-4.
Segal, A., Haehnel, D. & Thru, S. 2009. Generalized-ICP. Proceedings of Robotics: Science and
Systems 2(4): 435.
Seka, D., Bonny, B.S., Yoboué, A.N., Sié, S.R. &
Adopo-Gourène, B.A. 2019. Identification of maize (Zea mays L.) progeny genotypes based on two probabilistic
approaches: Logistic regression and naïve Bayes. Artificial Intelligence in Agriculture 1: 9-13.
Shan, T. & Englot, B. 2018. LeGO-LOAM: Lightweight and
ground optimized lidar odometry and mapping on variable terrain. IEEE/RSJ International Conference on
Intelligent Robots and Systems. pp. 4758-4765.
Sun, G., Wang, X., Ding, Y., Lu, W. & Sun, Y. 2019.
Remote measurement of apple orchard canopy information using unmanned aerial
vehicle photogrammetry. Agronomy 9(11): 744.
Underwood, J.P., Hung, C., Whelan, B. & Sukkarieh, S.
2016. Mapping almond orchard canopy volume, flowers, fruit and yield using
lidar and vision sensors. Computers
and Electronics in Agriculture 130: 83-96.
Wang, J., Zhang, F., Gao, H. & Lu, C. 2018. Extracting
crown structure parameters of individual tree by using ground-based laser
scanner. Transactions of the Chinese
Society for Agricultural Machinery 49: 200-206.
Ye, H., Chen, Y. & Liu, M. 2019. Tightly coupled 3D
lidar inertial odometry and mapping. International
Conference on Robotics and Automation (ICRA). pp. 3144-3150.
Zhang, J. & Singh, S. 2016. Low-drift and real-time
lidar odometry and mapping. Autonomous
Robots 41: 401-416.
Zhang, J. & Singh, S. 2014. LOAM: Lidar odometry and
mapping in real-time. Proceedings of the
Robotics: Science and Systems 2(9).
Zhou, S., Kang, F., Li, W., Kan, J., Zheng, Y. & He, G.
2019. Extracting diameter at breast height with a handheld mobile LiDAR system
in an outdoor environment. Sensors
(Basel) 19(14): 3212.
*Corresponding author; email:
zhoujun@njau.edu.cn
|