Sains Malaysiana 50(11)(2021): 3285-3296

http://doi.org/10.17576/jsm-2021-5011-12

 

 

Nutritional Composition, Techno-Functional Properties and Sensory Analysis of Pan Bread Fortified with Kenaf Seeds Dietary Fibre

(Komposisi Pemakanan, Sifat Tekno-Fungsi dan Analisis Sensori Roti Pan Diperkaya dengan Serat Pemakanan Biji Kenaf)

 

NURUL AINAA FARHANAH MAT RAMLAN1, SALMA MALIHAH MOHAMMAD1, ROSELINA KARIM2, SHARIFAH KHARIDAH SYED MUHAMMAD1, MAZNAH ISMAIL3 & NORHASNIDA ZAWAWI1,3*

 

1Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

3Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 3 November 2020/Accepted: 9 March 2021

 

ABSTRACT

Kenaf seeds are underutilized source of food with good source of dietary fiber, protein, essential oil, and phytocompounds. The objectives of this study were to determine the nutritional composition of kenaf seeds, the techno-functional properties of kenaf seeds dietary fibre (KSDF), and sensory analysis of pan bread fortified with dietary fibre that was extracted from kenaf seeds. Analyses showed that kenaf seeds are rich in dietary fibre (28.87 g/ 100 g), protein (27.07 g/ 100 g), oil (23.78 g/100 g) and mineral (5.55 g/100 g). The dietary fibre that was extracted through enzymatic hydrolysis (KSDF (EH)) exhibited significantly (p < 0.05) greater water-binding capacity (WBC), oil-binding capacity (OBC) and viscosity than non-enzymatic hydrolyzed kenaf seeds dietary fibre (KSDF (NEH)) and defatted kenaf seed meal (DKSM). Different formulations of bread were prepared by replacing 10% of wheat flour with wheat bran fibre (positive control), rice bran fibre and KSDF, with white bread unfortified with fibre as negative control. Addition of 10% KSDF to bread formulation significantly (p < 0.05) reduced bread height, volume, specific volume, water activity and firmness, and increased proofing time and bread surface colour. Results from the sensory evaluation of the bread samples also showed that KSDF bread was the most acceptable in comparison to rice bran and wheat bran fortified breads. This study shows that kenaf seed has valuable source of dietary fibre with the potential to be used as a functional ingredient in the development of functional breads. 

 

Keywords: Functional food; kenaf seeds; physical properties; sensory evaluation; shelf-life

 

ABSTRAK

Biji kenaf adalah sumber makanan yang kurang digunakan serta merupakan sumber serat, protein, minyak pati dan sebatian fito yang baik. Objektif kajian ini adalah untuk menentukan komposisi pemakanan biji kenaf, sifat tekno-fungsian serat dietari biji kenaf (KSDF) dan analisis sensori roti pan yang diperkaya dengan serat dietari yang diekstrak daripada biji kenaf. Analisis menunjukkan bahawa biji kenaf kaya dengan serat dietari (28.87 g/ 100 g), protein (27.07 g/ 100 g), lemak (23.78 g/ 100 g) dan mineral (5.55 g/ 100 g). Serat dietari yang diekstraksi melalui hidrolisis enzim (KSDF (EH)) menunjukkan keupayaan mengikat air (WBC), kapasiti mengikat minyak (OBC) dan kelikatan yang lebih ketara daripada serat dietari biji kenaf melalui hidrolisis bukan menggunakan enzim (KSDF (NEH)) dan benih kenaf yang telah dinyahlemak (DKSM). Formulasi roti yang berbeza disediakan dengan menggantikan 10% tepung gandum dengan serat dedak gandum (kawalan positif), serat dedak beras dan KSDF, dengan roti putih yang tidak diperkaya dengan serat sebagai kawalan negatif. Penambahan 10% KSDF ke dalam formulasi roti mengurangkan ketinggian, isi padu, isi padu tertentu, aktiviti air, kekerasan dan waktu kenaikan doh serta warna permukaan roti secara signifikan (p<0.05). Hasil daripada penilaian sensori sampel roti juga menunjukkan bahawa roti KSDF adalah yang paling diterima berbanding dengan roti yang difortikasi dengan bran beras dan gandum. Kajian ini menunjukkan biji kenaf tinggi dengan serat dietari yang berharga dengan potensi untuk digunakan sebagai ramuan berfungsi dalam penghasilan roti fungsian

.

Kata kunci: Biji kenaf; jangka hayat; komposisi nutrien; penilaian sensori; sifat fizikal; sifat tekno-fungsian

 

REFERENCES

Abdul-Hamid, A. & Luan, Y.S. 2000. Functional properties of dietary fibre prepared from defatted rice bran. Food Chem. 68(1): 15-19.

Angioloni, A. & Collar, C. 2012. High legume-wheat matrices: An alternative to promote bread nutritional value meeting dough viscoelastic restrictions. European Food Research and Technology 234: 273-284.

Ayadi, R., Hanana, M., Mzid, R., Hamrouni, L., Khouja, M.L. & Salhi Hanachi, A. 2017. Hibiscus cannabinus L. - Kenaf: A review paper. Journal of Natural Fibers 14(4): 466-484.

Beyer, K.M.M. 2016. Chapter 10: Chronic Environmental Diseases: Burdens, Causes, and Response. In Biological and Environmental.

Belghith Fendri, L., Chaari, F., Maaloul, M., Kallel, F., Abdelkafi, L., Ellouz Chaabouni, S. & Ghribi-Aydi, D. 2016. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT - Food Science and Technology 73: 584-591.

Chan, K.W., Khong, N.M.H., Iqbal, S., Mansor, S.M. & Ismail, M. 2013. Defatted kenaf seed meal (DKSM): Prospective edible flour from agricultural waste with high antioxidant activity. LWT - Food Sci. Technol. 53(1): 308-313.

Chen, L., Ao, F., Ge, X. & Shen, W. 2020. Food-grade pickering emulsions: Preparation, stabilization and applications. Molecules 25(14): 1-24.

Cheng, Z., Bao, R.L., Sameshima, K., Fu, D.X. & Chen, J.K. 2004. Identification and genetic relationship of kenaf germplasm revealed by AFLP analysis. Genet Resour. Crop Evol. 51: 393-401.

Dahl, W.J. & Stewart, M.L. 2015. Position of the Academy of Nutrition and Dietetics: Health implications of dietary fiber. Journal of the Academy of Nutrition and Dietetics 115(11): 1861-1870.

Dao, C. & Zhang, H. 2012. Study on functional properties of physically modified dietary fibres derived from defatted rice bran. J. Agric. Sci. 4(9): 85-97.

Daou, C. & Zhang, H. 2014. Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. Journal of Food Science and Technology 51(12): 3878-3885.

Dempsey, J.M. 1975. Kenaf. Fiber Crops. University of Florida Press. Tallahassee, FL: Rose Printing Company.

Dhingra, D., Michael, M., Rajput, H. & Patil, R.T. 2012. Dietary fibre in foods: A review. Journal of Food Science and Technology 49(3): 255-266.

Feili, R. 2013. Physical and sensory analysis of high dietary fiber bread incorporated with jackfruit rind flour. Food Sci. Tech. 1: 30-36.

Frost, J., Hegedus, E.F. & Glicksman, M. 1984. Objective characterization of hydrocolloid organoleptic properties. Food Tech. 38(1): 118-122.

Ghafar, S.A.A., Ismail, M., Yazan, L.S., Fakurazi, S., Ismail, N., Chan, K.W. & Tahir, P.M. 2013. Cytotoxic activity of kenaf seed oils from supercritical carbon dioxide fluid extraction towards human colorectal cancer (HT29) cell lines. Evid. Based Complement Alternat. Med. 2013: Article ID. 549705.

Gómez, M., Ronda, F., Blanco, C.A., Caballero, P.A. & Apesteguía, A. 2003. Effect of dietary fibre on dough rheology and bread quality. European Food Research and Technology 216: 51-56.

Guo, Q. 2021. Progress in the preparation, stability and functional applications of pickering emulsion. IOP Conference Series: Earth and Environmental Science 639: 1-8.

Huber, E., Francio, D.L., Biasi, V., Mezzomo, N. & Ferreira, S.R.S. 2016. Characterization of vegetable fiber and its use in chicken burger formulation. Journal of Food Science and Technology 53(7): 3043-3052.

Jaeger, H., Janositz, A. & Knorr, D. 2010. The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathol. Biol. 58(3): 207-213.

Kendall, C.W.C., Esfahani, A. & Jenkins, D.J.A. 2010. The link between dietary fibre and human health. Food Hydrocoll. 24(1): 42-48.

Kourkouta, L., Koukourikos, K., Iliadis, C., Ouzounakis, P., Monios, A. & Tsaloglidou, A. 2017. Bread and health. J. Pharm. Pharmacol. 5: 821-826.

Laufenberg, G. & Schulze, N. 2009. A Modular Strategy for Processing of Fruit and Vegetable Wastes into Value-Added Products. Handbook of Waste Management and Co-Product Recovery in Food Processing. (Vol. 2). Cambridge: Woodhead Publishing Limited.

Lin, M.J.Y., Humbert, E.S. & Sosulski, F. 1974. Certain functional properties of sunflower meal products. Journal of Food Science 39(2): 368-370.

Majzoobi, M., Ghavi, F.S., Farhanaky, A., Jamalian, J. & Mesbahi, G. 2011. Effect of tomato pomace powder on the physicochemical properties of flat bread (Barbari bread). Journal of Food Processing and Preservation 35(2): 247-256.

Mandala, I., Polaki, A. & Yanniotis, S. 2009. Influence of frozen storage on bread enriched with different ingredients. Journal of Food Engineering 92(2): 137-145.

Mariod, A.A., Fathy, S.F. & Ismail, M. 2010. Preparation and characterisation of protein concentrates from defatted kenaf seed. Food Chem. 123(3): 747-752.

Martin, M.L. & Hosney, R.C.A. 1991. A mechanism of bread firming II. Role of starch hydrolyzing enzymes. Cereal Chem. 68: 503-507.

Mat Daham Mohd Daud, Masnira Mohammad Yusoff, Noor Syahira Nasarudin, Zainal Abidin Hassan, Nik Ab Lah N Mohamed, Wong Choi Chee, Mohd Najib Mohd Amin & Abdullah Othman. 2015. Manual Teknologi Pengeluaran Kenaf di Malaysia. Edisi ketiga. Serdang: Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI).

Mohamed, A., Bhardwaj, H., Hamama, A. & Webber, C. 1995. Chemical composition of kenaf (Hibiscus cannabinusL.) seed oil. Ind. Crops Prod. 4: 157-165.

Morris, C. & Morris, G.A. 2012. The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: A review. Food Chemistry 133(2): 237-248.

National Coordinating Committee on Food and Nutrition, (NCCFN). 2017. Recommended Nutrient Intakes for Malaysia. A Report of the Technical Working Group on Nutritional Guidelines. Putrajaya: Ministry of Health Malaysia.

Nwosu, U.L., Elochukwu, C.U. & Onwurah, C.O. 2014. Physical characteristics and sensory quality of bread produced from wheat/African oil bean flour blends. African Journal of Food Science 8(6): 351-355.

Nyam, K.L., Tan, C.P., Lai, O.M., Long, K. & Man, Y.B.C. 2009. Properties and bioactive compounds of selected seed oils. LWT - Food Sci. Technol. 42(8): 1396-1403.

Olawepo, K.D., Banjo, O.T., Jimoh, W.A., Fawole, W.O., Orisasona, O. & Ojo-Daniel, A.H. 2014. Effect of cooking and roasting on nutritional and anti-nutritional factors in kenaf (Hibiscus cannabinus L.) seed meal. Food Sci. Qual. Manag. 24: 1-5.

Park, S.Y., Oh, T.S., Kim, G.W. & Kim, H.Y. 2020. Quality properties of various dietary fibers as isolated soy protein (ISP) replacements in pork emulsion systems. Journal of Animal Science and Technology 62(1): 94-102.

Raidi, M.A. & Klein, B.P. 1983. Effect of soy or field pea flour substitution on physical and sensory characteristics of chemically leavened quick breads. Cereal Chem. 60: 367-370.

Rubel, I.A., Pérez, E.E., Manrique, G.D. & Genovese, D.B. 2015. Fibre enrichment of wheat bread with Jerusalem artichoke inulin: Effect on dough rheology and bread quality. Food Structure 3: 21-29.

Rzigue, A., Monteau, J-Y., Marmi, K.,  Le Bail, A., Chevallier, S., Réguerre, A-L. & Jury, V. 2016. Bread collapse. Causes of the technological defect and impact of depanning time on bread quality. Journal of Food Engineering 182: 72-80.

Saba, N., Paridah, M.T., Jawaid, M., Abdan, K. & Ibrahim, N.A. 2015. Potential utilization of kenaf biomass in different applications. In Agricultural Biomass Based Potential Materials, edited by Hakeem, K., Jawaid, M. & Y. Alothman O. Switzerland: Springer-Verlag. pp. 1-34.

Tan, C., Wei, H., Zhao, X., Xu, C. & Peng, J. 2017. Effects of dietary fibers with high water-binding capacity and swelling capacity on gastrointestinal functions, food intake and body weight in male rats. Food and Nutrition Research 61(1): 1-8.

Timm, D. & Slavin, J.L. 2008. Dietary fiber and the relationship to chronic diseases. Am. J. Lifestyle Med. 2(3): 233-240.

Wang, J.C. & Kinsella, J.E. 1976. Functional properties of alfalfa leaf protein: Foaming. Journal of Food Science 41(3): 498-501.

World Health Organization. 2020. Cancer Today. https://gco.iarc.fr/today/home. Accessed on June 29, 2020.

World Health Organization. 2017. Cardiovascular Diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J. & Wang, Z. 2017. Physicochemical properties and structural characteristics of soluble dietary fibers from yellow and purple fleshed potatoes by-product. International Journal of Food Properties 20(Issue Sup. 3): S2939-S2949.

Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., Liu, Z. & Yuan, W. 2017. An overview of pickering emulsions: Solid-particle materials, classification, morphology, and applications. Frontiers in Pharmacology 8(287): 1-20.

Yangilar, F. 2013. The application of dietary fibre in food industry: Structural features, effects on health and definition, obtaining and analysis of dietary fibre: A review. J. Food Nutr. Res. 1: 13-23.

Yasumatsu, K., Sawada, K., Moritaka, S., Mikasi, M., Toda, T. & Tshi, K. 1972. Whipping and emulsifying properties of soybean products. Agricultural Biochemistry 36: 719- 727.

Zanoni, B., Peri, C. & Gianotti, R. 1995. Determination of the thermal diffusivity of bread as a function of porosity. J. Food Eng. 26(4): 497-510.

Zayas, J.F. 1997. Chapter 3: Emulsifying properties of proteins. In Functionality of Proteins in Food. Berlin Heidelberg: Springer-Verlag. pp. 134-227.

 

*Corresponding author; email: norhasnida@upm.edu.my

 

 

 

previous