Sains Malaysiana 50(11)(2021): 3285-3296
http://doi.org/10.17576/jsm-2021-5011-12
Nutritional Composition, Techno-Functional Properties and
Sensory Analysis of Pan Bread Fortified with Kenaf Seeds Dietary Fibre
(Komposisi Pemakanan, Sifat Tekno-Fungsi dan Analisis Sensori Roti Pan Diperkaya dengan Serat Pemakanan Biji Kenaf)
NURUL AINAA FARHANAH MAT RAMLAN1, SALMA MALIHAH
MOHAMMAD1, ROSELINA KARIM2, SHARIFAH KHARIDAH SYED
MUHAMMAD1, MAZNAH ISMAIL3 & NORHASNIDA ZAWAWI1,3*
1Department
of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
2Department
of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Laboratory
of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
Received: 3 November 2020/Accepted: 9 March 2021
ABSTRACT
Kenaf seeds are underutilized source of food with good
source of dietary fiber, protein, essential oil, and phytocompounds. The
objectives of this study were to determine the nutritional composition of kenaf
seeds, the techno-functional properties of kenaf seeds dietary fibre (KSDF), and sensory analysis of
pan bread fortified with dietary fibre that was
extracted from kenaf seeds. Analyses showed that kenaf seeds are rich in
dietary fibre (28.87 g/ 100 g), protein (27.07 g/ 100
g), oil (23.78 g/100 g) and mineral (5.55 g/100 g). The dietary fibre that was extracted through enzymatic hydrolysis (KSDF
(EH)) exhibited significantly (p < 0.05) greater water-binding capacity
(WBC), oil-binding capacity (OBC) and viscosity than non-enzymatic hydrolyzed kenaf seeds dietary fibre (KSDF
(NEH)) and defatted kenaf seed meal (DKSM). Different formulations of bread
were prepared by replacing 10% of wheat flour with wheat bran fibre (positive control), rice bran fibre and KSDF, with white bread unfortified with fibre as
negative control. Addition of 10% KSDF to bread formulation significantly (p
< 0.05) reduced bread height, volume, specific volume, water activity and
firmness, and increased proofing time and bread surface colour.
Results from the sensory evaluation of the bread samples also showed that KSDF
bread was the most acceptable in comparison to rice bran and wheat bran
fortified breads. This study shows that kenaf seed has valuable source of
dietary fibre with the potential to be used as a
functional ingredient in the development of functional breads.
Keywords: Functional food; kenaf seeds; physical properties; sensory
evaluation; shelf-life
ABSTRAK
Biji kenaf adalah sumber makanan yang kurang digunakan serta merupakan sumber serat, protein, minyak pati dan sebatian fito yang baik. Objektif kajian ini adalah untuk menentukan komposisi pemakanan biji kenaf, sifat tekno-fungsian serat dietari biji kenaf (KSDF) dan analisis sensori roti pan yang diperkaya dengan serat dietari yang diekstrak daripada biji kenaf. Analisis menunjukkan bahawa biji kenaf kaya dengan serat dietari (28.87 g/ 100 g), protein (27.07 g/ 100 g), lemak (23.78 g/ 100 g) dan mineral
(5.55 g/ 100 g). Serat dietari yang diekstraksi melalui hidrolisis enzim (KSDF (EH)) menunjukkan keupayaan mengikat air (WBC), kapasiti mengikat minyak (OBC) dan kelikatan yang lebih ketara daripada serat dietari biji kenaf melalui hidrolisis bukan menggunakan enzim (KSDF (NEH)) dan benih kenaf yang telah dinyahlemak (DKSM). Formulasi roti yang berbeza disediakan dengan menggantikan 10% tepung gandum dengan serat dedak gandum (kawalan positif), serat dedak beras dan KSDF, dengan roti putih yang tidak diperkaya dengan serat sebagai kawalan negatif. Penambahan 10%
KSDF ke dalam formulasi roti mengurangkan ketinggian, isi padu, isi padu tertentu, aktiviti air, kekerasan dan waktu kenaikan doh serta warna permukaan roti secara signifikan (p<0.05). Hasil daripada penilaian sensori sampel roti juga menunjukkan bahawa roti KSDF adalah yang paling diterima berbanding dengan roti yang difortikasi dengan bran beras dan gandum. Kajian ini menunjukkan biji kenaf tinggi dengan serat dietari yang berharga dengan potensi untuk digunakan sebagai ramuan berfungsi dalam penghasilan roti fungsian
.
Kata kunci: Biji kenaf; jangka hayat; komposisi nutrien; penilaian sensori; sifat fizikal; sifat tekno-fungsian
REFERENCES
Abdul-Hamid, A. & Luan, Y.S. 2000. Functional properties
of dietary fibre prepared from defatted rice bran. Food Chem. 68(1): 15-19.
Angioloni, A. & Collar, C. 2012. High legume-wheat matrices: An
alternative to promote bread nutritional value meeting dough viscoelastic
restrictions. European Food Research and
Technology 234: 273-284.
Ayadi, R., Hanana, M., Mzid, R., Hamrouni, L., Khouja, M.L. & Salhi Hanachi, A. 2017. Hibiscus cannabinus L. - Kenaf: A review paper. Journal of Natural Fibers 14(4): 466-484.
Beyer, K.M.M. 2016. Chapter 10: Chronic Environmental
Diseases: Burdens, Causes, and Response. In Biological
and Environmental.
Belghith Fendri, L., Chaari,
F., Maaloul, M., Kallel,
F., Abdelkafi, L., Ellouz Chaabouni, S. & Ghribi-Aydi,
D. 2016. Wheat bread enrichment by pea and broad bean pods fibers: Effect on
dough rheology and bread quality. LWT -
Food Science and Technology 73: 584-591.
Chan, K.W., Khong, N.M.H., Iqbal, S., Mansor,
S.M. & Ismail, M. 2013. Defatted kenaf seed meal (DKSM): Prospective edible
flour from agricultural waste with high antioxidant activity. LWT - Food Sci. Technol. 53(1): 308-313.
Chen, L., Ao, F., Ge, X. &
Shen, W. 2020. Food-grade pickering emulsions:
Preparation, stabilization and applications. Molecules 25(14): 1-24.
Cheng, Z., Bao, R.L., Sameshima, K., Fu,
D.X. & Chen, J.K. 2004. Identification and genetic relationship of kenaf
germplasm revealed by AFLP analysis. Genet Resour. Crop Evol. 51:
393-401.
Dahl, W.J. & Stewart, M.L. 2015. Position of the Academy
of Nutrition and Dietetics: Health implications of dietary fiber. Journal of the Academy of Nutrition and
Dietetics 115(11): 1861-1870.
Dao, C. & Zhang, H.
2012. Study on functional properties of physically modified dietary fibres derived from defatted rice bran. J. Agric. Sci. 4(9): 85-97.
Daou, C. & Zhang, H. 2014. Functional and physiological
properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. Journal
of Food Science and Technology 51(12): 3878-3885.
Dempsey, J.M. 1975. Kenaf. Fiber Crops. University of
Florida Press. Tallahassee, FL: Rose Printing Company.
Dhingra, D., Michael,
M., Rajput, H. & Patil, R.T. 2012. Dietary fibre in foods: A review. Journal of Food
Science and Technology 49(3): 255-266.
Feili, R. 2013. Physical and
sensory analysis of high dietary fiber bread incorporated with jackfruit rind
flour. Food Sci. Tech. 1: 30-36.
Frost, J., Hegedus, E.F. & Glicksman, M. 1984. Objective characterization of hydrocolloid organoleptic properties. Food Tech. 38(1): 118-122.
Ghafar,
S.A.A., Ismail, M., Yazan, L.S., Fakurazi,
S., Ismail, N., Chan, K.W. & Tahir, P.M. 2013. Cytotoxic activity of kenaf
seed oils from supercritical carbon dioxide fluid extraction towards human
colorectal cancer (HT29) cell lines. Evid. Based Complement Alternat. Med. 2013: Article ID. 549705.
Gómez, M., Ronda, F.,
Blanco, C.A., Caballero, P.A. & Apesteguía, A.
2003. Effect of dietary fibre on dough rheology and
bread quality. European Food Research and
Technology 216: 51-56.
Guo, Q. 2021. Progress in the preparation, stability and
functional applications of pickering emulsion. IOP Conference Series: Earth and
Environmental Science 639: 1-8.
Huber, E., Francio, D.L., Biasi, V., Mezzomo, N. &
Ferreira, S.R.S. 2016. Characterization of vegetable fiber and its use in
chicken burger formulation. Journal of
Food Science and Technology 53(7): 3043-3052.
Jaeger, H., Janositz, A. & Knorr, D. 2010. The Maillard reaction
and its control during food processing. The potential of emerging technologies. Pathol. Biol. 58(3): 207-213.
Kendall, C.W.C., Esfahani, A. & Jenkins, D.J.A. 2010. The link between
dietary fibre and human health. Food Hydrocoll. 24(1): 42-48.
Kourkouta,
L., Koukourikos, K., Iliadis,
C., Ouzounakis, P., Monios,
A. & Tsaloglidou, A. 2017. Bread and health. J. Pharm. Pharmacol.
5: 821-826.
Laufenberg, G. & Schulze, N. 2009. A Modular Strategy for Processing of Fruit and Vegetable Wastes into
Value-Added Products. Handbook of
Waste Management and Co-Product Recovery in Food Processing. (Vol. 2).
Cambridge: Woodhead Publishing Limited.
Lin, M.J.Y., Humbert, E.S. & Sosulski,
F. 1974. Certain functional properties of sunflower meal products. Journal of Food Science 39(2): 368-370.
Majzoobi,
M., Ghavi, F.S., Farhanaky,
A., Jamalian, J. & Mesbahi,
G. 2011. Effect of tomato pomace powder on the physicochemical properties of
flat bread (Barbari bread). Journal of Food Processing and Preservation 35(2): 247-256.
Mandala, I., Polaki, A. & Yanniotis, S.
2009. Influence of frozen storage on bread enriched with different ingredients. Journal of Food Engineering 92(2):
137-145.
Mariod,
A.A., Fathy, S.F. & Ismail, M. 2010. Preparation
and characterisation of protein concentrates from
defatted kenaf seed. Food Chem. 123(3): 747-752.
Martin, M.L. & Hosney,
R.C.A. 1991. A mechanism of bread firming II. Role of starch hydrolyzing
enzymes. Cereal Chem. 68:
503-507.
Mat Daham Mohd Daud, Masnira Mohammad Yusoff, Noor Syahira Nasarudin, Zainal Abidin Hassan, Nik Ab Lah N
Mohamed, Wong Choi Chee, Mohd Najib Mohd Amin & Abdullah Othman. 2015. Manual Teknologi Pengeluaran Kenaf di Malaysia. Edisi ketiga. Serdang: Institut Penyelidikan dan Kemajuan Pertanian Malaysia
(MARDI).
Mohamed, A., Bhardwaj,
H., Hamama, A. & Webber, C. 1995. Chemical
composition of kenaf (Hibiscus cannabinusL.) seed oil. Ind. Crops Prod. 4: 157-165.
Morris, C. & Morris, G.A. 2012. The effect of inulin and
fructo-oligosaccharide supplementation on the textural, rheological and sensory
properties of bread and their role in weight management: A review. Food Chemistry 133(2): 237-248.
National Coordinating
Committee on Food and Nutrition, (NCCFN). 2017. Recommended Nutrient Intakes for Malaysia. A Report of the Technical
Working Group on Nutritional Guidelines. Putrajaya: Ministry of Health
Malaysia.
Nwosu, U.L., Elochukwu, C.U. & Onwurah,
C.O. 2014. Physical characteristics and sensory quality of bread produced from
wheat/African oil bean flour blends. African
Journal of Food Science 8(6): 351-355.
Nyam, K.L., Tan, C.P., Lai, O.M., Long, K. & Man, Y.B.C.
2009. Properties and bioactive compounds of selected seed oils. LWT - Food Sci. Technol. 42(8): 1396-1403.
Olawepo, K.D., Banjo, O.T., Jimoh, W.A., Fawole, W.O., Orisasona, O. & Ojo-Daniel, A.H. 2014. Effect of cooking and roasting
on nutritional and anti-nutritional factors in kenaf (Hibiscus cannabinus L.) seed meal. Food Sci. Qual. Manag. 24: 1-5.
Park, S.Y., Oh, T.S., Kim, G.W. & Kim, H.Y. 2020.
Quality properties of various dietary fibers as isolated soy protein (ISP)
replacements in pork emulsion systems. Journal
of Animal Science and Technology 62(1): 94-102.
Raidi, M.A. & Klein, B.P. 1983. Effect of soy or field pea
flour substitution on physical and sensory characteristics of chemically
leavened quick breads. Cereal Chem. 60: 367-370.
Rubel, I.A., Pérez, E.E., Manrique, G.D. & Genovese,
D.B. 2015. Fibre enrichment of wheat bread with
Jerusalem artichoke inulin: Effect on dough rheology and bread quality. Food Structure 3: 21-29.
Rzigue, A., Monteau, J-Y., Marmi, K., Le Bail, A., Chevallier, S., Réguerre, A-L. & Jury, V. 2016. Bread collapse.
Causes of the technological defect and impact of depanning time on bread quality. Journal of Food
Engineering 182: 72-80.
Saba, N., Paridah, M.T., Jawaid, M., Abdan, K. &
Ibrahim, N.A. 2015. Potential utilization of kenaf biomass in different
applications. In Agricultural Biomass
Based Potential Materials, edited by Hakeem, K., Jawaid,
M. & Y. Alothman O. Switzerland: Springer-Verlag.
pp. 1-34.
Tan, C., Wei, H., Zhao, X., Xu, C. & Peng, J. 2017.
Effects of dietary fibers with high water-binding capacity and swelling
capacity on gastrointestinal functions, food intake and body weight in male
rats. Food and Nutrition Research 61(1): 1-8.
Timm, D. & Slavin, J.L. 2008.
Dietary fiber and the relationship to chronic diseases. Am. J. Lifestyle Med. 2(3): 233-240.
Wang, J.C. & Kinsella, J.E. 1976. Functional properties
of alfalfa leaf protein: Foaming. Journal
of Food Science 41(3): 498-501.
World Health Organization. 2020. Cancer Today. https://gco.iarc.fr/today/home. Accessed on June 29, 2020.
World Health Organization. 2017. Cardiovascular Diseases (CVDs).
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J. & Wang, Z.
2017. Physicochemical properties and structural characteristics of soluble
dietary fibers from yellow and purple fleshed potatoes by-product. International Journal of Food Properties 20(Issue
Sup. 3): S2939-S2949.
Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie,
Y., Chen, Y., Liu, Z. & Yuan, W. 2017. An overview of pickering emulsions: Solid-particle materials, classification, morphology, and
applications. Frontiers in Pharmacology 8(287): 1-20.
Yangilar, F. 2013. The application of dietary fibre in food industry: Structural features, effects on health and definition,
obtaining and analysis of dietary fibre: A review. J. Food Nutr. Res.
1: 13-23.
Yasumatsu, K., Sawada, K., Moritaka, S., Mikasi, M., Toda, T. & Tshi,
K. 1972. Whipping and emulsifying properties of soybean products. Agricultural Biochemistry 36: 719- 727.
Zanoni, B., Peri, C. & Gianotti, R.
1995. Determination of the thermal diffusivity of bread as a function of
porosity. J. Food Eng. 26(4):
497-510.
Zayas, J.F. 1997. Chapter 3: Emulsifying properties of
proteins. In Functionality of Proteins in
Food. Berlin Heidelberg: Springer-Verlag. pp. 134-227.
*Corresponding
author; email: norhasnida@upm.edu.my
|