Sains Malaysiana 50(11)(2021):
3303-3311
http://doi.org/10.17576/jsm-2021-5011-14
Downregulation of WNT8A, LRP5, LRP6 and FGF8 in
Malay Non-Syndromic Cleft Lip and/or Palate Patients
(Pengawalaturan Rendah WNT8A, LRP5, LRP6 dan FGF8 pada Pesakit Melayu Sumbing Bibir Bukan Sindrom dengan atau Tanpa Sumbing Lelangit)
NURUL SYAZANA MOHAMAD SHAH1*, WAN AZMAN WAN SULAIMAN1,
SARINA SULONG2 & AHMAD SUKARI HALIM3
1Reconstructive Science Unit, School
of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian,
Kelantan Darul Naim, Malaysia
2Human Genome Centre, School of
Medical Sciences, Health Campus, Universiti Sains Malaysia
16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
3Director
Office, Hospital Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian,
Kelantan Darul Naim, Malaysia
Received: 23 September 2020/Accepted: 1 March 2021
ABSTRACT
Non-syndromic
cleft lip and/or palate (NSCL/P) is a one of the most common birth defects
occurs as a result of multi-factorial determinants such as genetic and
environmental factors. Genetic factor has been studying widely across different
population in identifying genes causing cleft defects. This study aims to
validate the role of fibroblast growth factors (FGFs) and signalling molecules
Wingless-type (Wnt) to the occurrence of cleft lip and/or palate among Malay
population. Tissue skin was obtained from consented NSCL/P patients who
underwent the cleft lip repair operation at the upper lip skin area and non NSCL/P
individual was obtained from patient having traumatic injury at the lip area as
a control. Expression pattern of FGF8,
FGF10, Wnt8a, and LRP5/6 were tested and validated using Western
Blot (WB) and quantitative Reverse Transcriptase-PCR (qRT-PCR). The fold change
difference of FGF8 (0.614 ± 0.1012-fold), FGF10 (0.7188 ± 0.1017-fold) and
Wnt8a protein (0.9051 ± 0.0142-fold) was downregulated by 1-fold in cleft lip
(CL) tissues compared to the normal meanwhile LRP5/6 protein (1.2201 ±
0.1404-fold) was found upregulated by 1-fold. Validation testing confirmed that
expression of FGF8 (p=0.014), Wnt8a (0.0762 ± 0.0227), LRP5 (0.3577 ± 0.1362) and LRP6 (0.3093 ± 0.2541) were significantly
reduced in CL tissues compared to normal. This is the first study identified
defective regulation of Wnt8a, LRP5, LRP6 and FGF8 in NSCL/P among
Malays. These novel findings clearly explained the important role of growth
factors FGF and Wnt signalling pathway in lip and palate formation during
craniofacial development.
Keywords:
Craniofacial; gene expression; non-syndromic cleft; protein
ABSTRAK
Sumbing bibir
bukan sindrom dengan atau tanpa sumbing lelangit adalah salah satu
kecacatan kelahiran yang berlaku disebabkan oleh pelbagai faktor seperti faktor
genetik dan persekitaran. Kajian ke atas faktor genetik giat dijalankan
terhadap pelbagai populasi berbeza dalam mengenal pasti gen-gen penyebab
kecacatan sumbing. Kajian ini bertujuan untuk memvalidasi peranan faktor
pertumbuhan ‘Fibroblast growth factor’ (FGF) dan signal
molekul ‘Wingless-type’ (Wnt) terhadap pembentukan sumbing bibir dengan atau tanpa lelangit dalam kalangan
populasi Melayu. Tisu kulit diperoleh dengan kebenaran daripada pesakit sumbing
yang mendapat rawatan pembedahan sumbing bibir dan individu bukan sumbing daripada
pesakit yang mengalami kecederaan pada bahagian bibir sebagai kawalan.
Pengekspresan FGF8, FGF10, Wnt8a dan LRP5/6 diuji dan divalidasi menggunakan teknik
‘Western Blot’ (WB) dan kuantitatif transkripsi berbalik-PCR’ (qRT-PCR).
Protein-protein FGF8 (0.614 ±
0.1012-fold), FGF10 (0.7188 ±
0.1017-fold) dan Wnt8a (0.9051 ±
0.0142-fold) pada tisu sumbing menunjukkan penurunan sebanyak sekali ganda
berbanding normal manakala protein LRP5/6 (1.2201 ± 0.1404- fold) menunjukkan peningkatan sekali ganda. Ujian
validasi mengesahkan penurunan ekspresi FGF8 (p=0.014), Wnt8a (0.0762 ±
0.0227), LRP5 (0.3577 ± 0.1362) dan LRP6 (0.3093 ± 0.2541) secara signifikan pada
tisu sumbing berbanding normal. Kajian ini adalah yang pertama mengenal pasti
kecacatan regulasi Wnt8a, LRP5, LRP6 dan FGF8 pada NSCL/P dalam kalangan
Melayu. Penemuan novel ini menjelaskan secara terperinci kepentingan peranan
faktor pertumbuhan FGF dan laluan
signal Wnt dalam pembentukan bibir
dan lelangit ketika pembentukan kraniofasial.
Kata
kunci: Ekspresi gen; kraniofasial; protein; sumbing bukan sindrom
REFERENCES
Alappat, S.R., Zhang,
Z., Suzuki, K., Zhang, X., Liu, H., Jiang, R., Yamada, G. & Chen, Y.
2005. The cellular and molecular etiology of the
cleft secondary palate in Fgf10 mutant mice. Developmental Biology 277(1):
102-113.
Bachler, M. & Neubüser, A. 2001. Expression of members of the Fgf family and their receptors during
midfacial development. Mechanisms of
Development 100(2): 313-316.
Bejsovec, A. 2005. Wnt pathway activation: New relations and
locations. Cell 120(1): 11-14.
Boo, N. & Arshad, A. 1990. A study of cleft lip and palate in
neonates born in a large Malaysian maternity hospital over a 2-year period. Singapore Medical Journal 31(1): 59-62.
Boyden, L.M., Mao, J.,
Belsky, J., Mitzner, L., Farhi, A., Mitnick, M.A., Wu, D., Insogna, K. &
Lifton, R.P. 2002. High bone density due to a mutation
in LDL–receptor–related protein 5. New
England Journal of Medicine 346(20): 1513-1521.
Chiquet, B.T. 2011. Gene discovery in nonsyndromic cleft lip with or
without cleft palate. UT GSBS Dissertations and Theses (Open Access). Paper
131.
Culi, J. & Mann, R.S. 2003. Boca, an endoplasmic reticulum
protein required for wingless signaling and trafficking of LDL receptor family
members in Drosophila. Cell 112(3): 343-354.
Dailey, L., Ambrosetti, D., Mansukhani, A. & Basilico, C. 2005.
Mechanisms underlying differential responses to Fgf signaling. Cytokine &
Growth Factor Reviews 16(2): 233- 247.
Dale, R.M., Sisson, B.E. & Topczewski, J. 2009. The emerging
role of Wnt/Pcp signaling in organ formation. Zebrafish 6(1): 9-14.
Davidson, B.N. 2012. Examining cleft lip and palate as a lifelong
disease: Genetic investigation of causes and outcomes. Dissertation. University
of Iowa Health Care (Unpublished).
De Calisto, J., Araya, C., Marchant, L., Riaz, C.F. & Mayor, R.
2005. Essential role of non- canonical Wnt signalling in neural crest
migration. Development 132(11):
2587-2597.
De Moerlooze, L., Spencer-Dene, B., Revest, J., Hajihosseini, M.,
Rosewell, I. & Dickson, C. 2000. An important role for the IIIb isoform of
fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial
signalling during mouse organogenesis. Development 127(3): 483-492.
Fon Tacer, K., Bookout,
A.L., Ding, X., Kurosu, H., John, G.B., Wang, L., Goetz, R., Mohammadi, M.,
Kuro-o, M., Mangelsdorf, D.J. & Kliewer, S.A. 2010. Research resource: Comprehensive expression atlas of the fibroblast growth
factor system in adult mouse. Molecular
Endocrinology 24(10): 2050-2064.
Hsieh, J.C., Lee, L.,
Zhang, L., Wefer, S., Brown, K., DeRossi, C., Wines, M.E., Rosenquist, T. &
Holdener, B.C. 2003. Mesd encodes an Lrp5/6 chaperone
essential for specification of mouse embryonic polarity. Cell 112(3): 355-367.
Lim, C.K., Halim, A.S., Zainol, I. & Noorsal, K. 2011. In vitro evaluation of a biomedical-
grade bilayer chitosan porous skin regenerating template as a potential dermal
scaffold in skin tissue engineering. International
Journal of Polymer Science 2011: Article ID. 645820.
Little, R.D., Folz, C.,
Manning, S.P., Swain, P.M., Zhao, S.C., Eustace, B., Lappe, M.M., Spitzer, L.,
Zweier, S., Braunschweiger, K. & Benchekroun, Y. 2002. A mutation in the LDL receptor–related protein 5 gene results in
the autosomal dominant high–bone-mass trait. The American Journal of Human Genetics 70(1): 11-19.
Liu, W. & Foley, A.C. 2011. Signaling pathways in early cardiac
development. Wiley Interdisciplinary
Reviews: Systems Biology and Medicine 3(2): 191-205.
Logan, C.Y. & Nusse, R. 2004. The Wnt signaling pathway in
development and disease. Annu. Rev. Cell
Dev. Biol. 20: 781-810.
Mangold, E., Reutter, H., Birnbaum, S., Walier, M., Mattheisen, M.,
Henschke, H., Lauster, C., Schmidt, G., Schiefke, F., Reich, R.H. & Scheer,
M. 2009. Genome-wide linkage scan of nonsyndromic orofacial clefting in 91
families of central European origin. American
Journal of Medical Genetics Part A 149(12): 2680-2694.
Meng, T., Shi, J.Y.,
Wu, M., Wang, Y., Li, L., Liu, Y., Zheng, Q., Huang, L. & Shi, B. 2012.
Overexpression of mouse TTF‐2 gene causes cleft palate. Journal of Cellular and Molecular Medicine 16(10):
2362-2368.
Niemann, S., Zhao, C.,
Pascu, F., Stahl, U., Aulepp, U., Niswander, L., Weber, J.L. & Müller,
U. 2004. Homozygous
Wnt3 mutation causes tetra-amelia in a large consanguineous family. The American Journal of Human Genetics 74(3):
558-563.
Nusse, R. 2005. Wnt signaling in disease and in development. Cell Research 15(1): 28-32.
Nie, X., Luukko, K. & Kettunen, P. 2006. Fgf signalling in craniofacial development and developmental
disorders. Oral Diseases 12(2):
102-111.
Ohuchi, H., Hori, Y., Yamasaki, M., Harada, H., Sekine, K., Kato, S.
& Itoh, N. 2000. Fgf10 acts as a
major ligand for Fgf receptor 2 IIIb
in mouse multi-organ development. Biochemical
and Biophysical Research Communications 277(3): 643-649.
Ornitz, D.M. & Itoh, N. 2001. Fibroblast growth factors. Genome Biol. 2(3): 1-12.
Pauws, E. & Stanier, P. 2007. Fgf signalling and sumo modification: New players in the aetiology
of cleft lip and/or palate. TRENDS in
Genetics 23(12): 631-640.
Rice, R., Spencer-Dene, B., Connor, E.C., Gritli-Linde, A., McMahon,
A.P., Dickson, C. & Rice, D.P. 2004. Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes
cleft palate. Journal of Clinical
Investigation 113(12): 1692.
Riley, B.M., Mansilla, M.A., Ma, J., Daack-Hirsch, S., Maher, B.S.,
Raffensperger, L.M. & Mohammadi, M. 2007. Impaired Fgf signaling contributes to cleft lip and palate. Proceedings of the National Academy of
Sciences 104(11): 4512-4517.
Sakaue, H., Konishi, M., Ogawa, W., Asaki, T., Mori, T., Yamasaki,
M. & Kasuga, M. 2002. Requirement of fibroblast growth factor 10 in
development of white adipose tissue. Genes
& Development 16(8): 908-912.
Sasaki, S., Miyake, A., Ohta, H., Konishi, M., Itoh, N. &
Nakajima, Y. 2011. The Fgf Family in
Humans, Mice, and Zebrafish: Development, Physiology, and Pathophysiology:
INTECH Open Access Publisher.
Shah, N.S.M.,
Salahshourifar, I., Sulong, S., Sulaiman, W.A.W. & Halim, A.S. 2016. Discovery
of candidate genes for nonsyndromic cleft lip palate through genome-wide
linkage analysis of large extended families in the Malay population. BMC Genetics 17(1): 1-9.
Shaw, G.M., Croen, L.A. & Curry, C.J. 1991. Isolated oral cleft
malformations: Associations with maternal and infant characteristics in a
California population. Teratology 43(3):
225-228.
Snyder-Warwick, A.K., Perlyn, C.A., Pan, J., Yu, K., Zhang, L. &
Ornitz, D.M. 2010. Analysis of a gain-of-function FGFR2 crouzon mutation
provides evidence of loss of function activity in the etiology of cleft Palate. Proceedings of the National Academy of
Sciences 107(6): 2515-2520.
Song, L., Li, Y., Wang,
K., Wang, Y.Z., Molotkov, A., Gao, L., Zhao, T., Yamagami, T., Wang, Y., Gan,
Q. & Pleasure, D.E. 2009. Lrp6-mediated canonical
Wnt signaling is required for lip formation and fusion. Development 136(18): 3161-3171.
Sperber, G.H. 2002. Craniofacial embryogenesis: Normal developmental
mechanisms. In Understanding Craniofacial
Anomalies, edited by Mooney, M.P. & Siegel, M.I. Wiley Online Library.
pp. 29-59.
Sun, X., Meyers, E.N., Lewandoski, M. & Martin, G.R. 1999.
Targeted disruption of Fgf8 causes
failure of cell migration in the gastrulating mouse embryo. Genes & Development 13(14):
1834-1846.
Tamai, K., Semenov, M.,
Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-Jeannet, J.P.
& He, X. 2000. LDL-receptor-related proteins in Wnt
signal transduction. Nature 407(6803):
530-535.
Veeman, M.T., Axelrod, J.D. & Moon, R.T. 2003. A second canon:
Functions and mechanisms of Β-catenin-independent Wnt signaling. Developmental Cell 5(3): 367-377.
Weng, M., Chen, Z., Xiao, Q., Li, R. & Chen, Z. 2018. A review
of Fgf signaling in palate development. Biomedicine & Pharmacotherapy 103:
240-247.
Yamaguchi, T.P., Bradley, A., McMahon, A.P. & Jones, S. 1999. A
Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate
embryo. Development 126(6):
1211-1223.
*Corresponding author; email: syazanashah@usm.my
|