Sains Malaysiana 50(11)(2021): 3333-3344
http://doi.org/10.17576/jsm-2021-5011-17
The Potential of Snail Seromucous and Chitosan as
Bioimunomodulator for Tuberculosis Therapy
(Potensi Seromukus Siput dan Kitosan sebagai
Bioimunopemodulat untuk Terapi Tuberkulosis)
YUSUP
SUBAGIO SUTANTO1*, MAGDALENA SUTANTO2, AGNES SRI HARTI3 & NONY PUSPAWATI4
1Pulmonary Disease Study Program, Faculty of Medicine,
Sebelas Maret University of Surakarta, Ir. Sutami No. 56 A, Surakarta, Central
of Java, Indonesia
2District General Hospital of Surakarta City, Lettu Sumarto
No. 1 Str, Surakarta, Central of Java, Indonesia
3Department of Nursing, Faculty of Health Science, Kusuma
Husada University of Surakarta, Jaya Wijaya No. 11, Surakarta, Central of Java,
Indonesia
4Department of Medical Laboratory Technical Analyst, Faculty
of Health Science, Setia Budi University of Surakarta, Let. Jen. Sutoyo,
Surakarta, Central of Java, Indonesia
Received: 1 February 2021/Accepted: 15 March 2021
ABSTRACT
Tuberculosis (TB) as a global emergency is a chronic disease
caused by Mycobacterium tuberculosis (Mtb). Mtb plays an important role in
inducing or suppressing the production of Interferon Gamma (IFNG) and IL-4 in
the regulation of TB homeostasis and pathogenesis. The bioactive compounds of
the snail seromucous (Achatina fulica Ferussac)
and chitosan function as biological response modifiers. The study aimed to
determine the potential effectiveness of snail seromucous and chitosan as
bio-immunomodulator for TB therapy. The research method was based on the
results of laboratory experiments with the physic-chemical, biochemical,
microbiological examination, snail seromucous protein profile, lymphocyte
proliferation, measurement of IFNG, and IL-4 levels. The results of the
physic-chemical examination of the snail seromucous showed a specific gravity
of 1.010; pH 8, glucose 16 mg/dL; cholesterol 9 mg/dL; protein 2.8 mg/dL and
heavy metals (Pb, Cu, Hg, Al) negative. The results of microbiological tests
showed that a 100% concentration of snail seromucous was antimicrobial against Staphylococcus aureus,
Candida albicans, and Pseudomonas
aeruginosa. The protein profile of snail
seromucous shows that there are 3 protein subunits, namely the range 55 - 72
kDa and 1 specific protein sub-unit 43 kDa as a bioactive compound achasin
sulfate. Addition of chitosan dose of 65 µg/mL; snail seromucous dose of 65
µg/mL and a mixture of chitosan (65 µg/mL): snail seromucous (65 µg/mL) ratio
1: 1, can increase lymphocyte proliferation; optimum levels of IFN-γ and
IL-4. Snail seromucous and chitosan are effective immunomodulators and
potential candidates for TB therapy.
Keywords: Chitosan; IFNG; IL-4; immunomodulator; Mtb; snail
seromucous
ABSTRAK
Tuberkulosis (TB) ialah penyakit kronik kecemasan global
yang disebabkan oleh Mycobacterium
tuberculosis (Mtb). Mtb memainkan peranan
penting dalam menekan pengeluaran Interferon Gamma (IFNG) dan IL-4 untuk
pengaturan homeostasis TB dan patogenesis. Sebatian bioaktif seromukus siput (Achatina
fulica Ferussac) dan kitosan berfungsi
sebagai pengubah tindak balas biologi. Objektif kajian ini adalah untuk
menentukan potensi keberkesanan seromukus siput dan kitosan sebagai
bioimunopemodulat untuk terapi TB. Kaedah penyelidikan berdasarkan hasil makmal
uji kaji dengan tahap penyelidikan fizikokimia, biokimia, pemeriksaan
mikrobiologi, profil protein seromukus siput, aktiviti imunopemodulat seromukus
siput dan kitosan, percambahan limfosit, pengukuran tahap IFNG dan IL-4. Hasil
pemeriksaan fizik-kimia seromukus siput menunjukkan graviti khusus 1.010; pH 8,
glukosa 16 mg/dL; kolesterol 9 mg/dL; protein 2.8 mg/dL dan logam berat (Pb,
Cu, Hg, Al) negatif. Hasil ujian mikrobiologi menunjukkan bahawa kepekatan
seromukus siput 100% adalah antimikrob terhadap Staphylococcus aureus,
Candida albicans dan Pseudomonas
aeruginosa. Profil protein kaedah
SDS-PAGE menunjukkan bahawa terdapat 3 sub-unit protein berkisar 55 - 72 kDa
dan 1 sub-unit protein khusus 43 kDa sebagai sebatian bioaktif achasin sulfat. Kitosan (65 ug/mL); lendir siput (65 µg/mL) dan campuran
kitosan (65 µg/mL) dengan lendir siput (65 µg/mL) nisbah 1: 1, dapat
meningkatkan percambahan limfosit juga tahap optimum IFN-γ dan IL- 4. Seromukus siput dan kitosan adalah imunopemodulat yang mengagumkan dan calon yang berpotensi untuk terapi
TB.
Kata kunci: IFNG; IL-4; imunopemodulat; kitosan; Mtb;
seromukus siput
REFERENCES
Abbas Abul, K., Lichman, A.H.H. & Shiv Pillai. 2014.
Effector mechanisms of T cell-mediated immunity functions of T cells in host
defense. Basic Immunology: Functions and
Disorders of the Immune System. Philadelphia USA: Elsevier Saunders.
Benkendorff, K., Rudd, D., Nongmaithem, B.D., Liu, L.,
Young, F., Edwards, V., Avila, C. & Abbott, C.A. 2015. Are the traditional
medical uses of muricidae molluscs substantiated by their pharmacological
properties and bioactive compounds? Mar.
Drugs 13: 5237-5275.
Bislimi, K., Behluli, A., Halili, J., Mazreku, I., Osmani,
F. & Halili, F. 2013. Comparative analysis of some biochemical parameters in
emolymph of garden snail (Helix pomatia L.) of the Kastriot and Ferizaj Regions, Kosovo. International Journal of Engineering and Applied Sciences 4(6):
11-18.
Bonnemain, B. 2005. Helix and drugs: Snails for Western
health care from antiquity to the present. Evid.
Based Complement Alternat. Med. 2(1) 25-28.
Dang, V.T., Benkendorff, K., Green, T. & Speck, P. 2015.
Marine snails and slugs: A great place to look for antiviral drugs. J. Virol. 89(16):
8114-8118.
Deretic, V., Delgado, M., Vergne, I., Master, S., De Haro,
S., Ponpuak, M. & Singh, S. 2009. Autophagy in immunity against
mycobacterium tuberculosis: A model system to dissect immunological roles of
autophagy. Curr. Top Microbiol.
Immunol. 335: 169-188.
Dolashka, P., Dolashki, A., Velkova, L., Stevanovic, S.,
Molin, L., Traldi, P., Velikova, R. & Voelter, W. 2015. Bioactive compounds
isolated from garden snails. J. BioSci.
Biotechnol. SE/ONLINE: 147-155.
Dolashka, P., Dolashki, A., Voelter, W., Van Beeumen, J.
& Stevanovic, S. 2014. Antimicrobial activity of peptides the hemolymph of Helix lucorum snails. J. of Pept. Science 20: S268.
El Mubarak, M.A., Lamari, F.N. & Kontoyannis, C. 2013.
Simultaneous determination of allantoin and glycolic acid in snail mucus and
cosmetic creams with high performance liquid chromatography and ultraviolet
detection. J. Chromatogr. A 1322:
49-53.
Etim, L.B., Chuku, A. & Godwin, A.O. 2015. Antibacterial
properties of snail mucus on bacteria isolated from a patient with wound
infection. British Microbiology Research
Journal 11(2): 1-9.
Greistorfer, S., Waltraud, K., Norbert, C., Andreas, G.,
Livia, R., Johannes, S. & von Byern, J. 2017. Snail mucus - glandular
origin and composition in Helix pomatia.
Zoology 122: 126-138.
Gustiani, N., Parwati, I., Tjandrawati, A. & Lismayanti,
L. 2014. Validity of complex specific antigen mycobacterium tuberculosis region
of difference 1-3 examination using rapid immunochromatography method in
pulmonary tuberculosis patient sputum. MKB 46(4): 241-246.
Harti, A.S., Puspawati, N. & Putriningrum, R. 2019.
Antimicrobial bioactive compound of seromucous as biological response modifiers
immunostimulator. Microbiology Indonesia 13(3):
56-63.
Harti, A.S., Atiek Murharyati, S. Dwi Sulisetyawati &
Meri Oktariani. 2018. The effectiveness of snail mucus (Achantina fulica) and chitosan towards limfosit proliferation in vitro. Asian
Journal Pharmaceutical and Clinical Research 11(Special Issue 3):
85-88.
Harti, A.S., S. Dwi Sulisetyawati, Atiek Murharyati, Meri
Oktariani & Ika Budi Wijayanti. 2016. The effectiveness of snail slime and
chitosan in wound healing. International
Journal of Pharma Medicine and Biological Science 5(1): 76-80.
Ibrahim, K., El-Eswed, B., Abu-Sbeih, K., Arafat, T., Omari,
M.A., Darras, F. & Badwan, A.A. 2016. Preparation of Chito-oligomers by
hydrolysis of chitosan in the presence of zeolite as adsorbent. Mar. Drugs 14(8): 43.
Levinson, W. & Jawetz, E. 2003. Medical Microbiology and Immunology Examination and Board Review.
Singapore: McGraw-Hill.
Nantarat, N., Tragoolpua, Y. & Gunama, P. 2019.
Antibacterial activity of the mucus extract from the giant african snail (Lissachatina fulica) and golden apple
snail (Pomacea canaliculata) against
pathogenic bacteria causing skin diseases. Tropical
Natural History Chulalongkorn University 19(2): 103-112.
Nisha Singh, Pallavi Kansal, Zeeshan Ahmad, Navin Baid,
Hariom Kushwaha, Neeraj Khatri & Ashwani Kumar 2018. Antimycobacterial
effect of IFNG (interferon-gamma)- induced autophagy depends on HMOX1 (heme
oxygenase 1)-mediated increase in intracellular calcium levels and modulation
of PPP3/calcineurin-TFEB (transcription factor EB) axis. Autophagy 14(6): 972-991.
Rovetta, A.I., Peña, D., Hernández Del Pino, R.E., Recalde,
G.M., Pellegrini, J., Bigi, F., Musella, R.M., Palmero, D.J., Gutierrez, M.,
Colombo, M.I. & García, V.E. 2014. IFNG-mediated immune responses enhance
autophagy against Mycobacterium
tuberculosis antigens in patients with active tuberculosis. Autophagy 10(12): 2109-2121.
Sallam, A.A., El-Massry, S.A. & Nasr, I.N. 2009.
Chemical analysis of mucus from certain land snails under Egyptian conditions. Archives of Phytopathology and Plant
Protection 42(9): 874-881.
Sudiana, I.K. 2014. Imunopatobiologi
Molekuler. Surabaya: Airlangga University Press (AUP).
Sutanto, Y.S., Reviono, R., Aphridasari, J., Ramlie, A.
& Kurniawan, H. 2021. The effect of ginsenoside 4% on inflammation,
bacteremia and clinical improvement in community-acquired pneumonia patients. SRP 12(1): 686-691.
Suwannatri, K., Aiporn, S., Paitra, T., Jariya, U.W.,
Sirikachorn, T., Cinzia, C., Jason, M., Smarn, T., Alex, L. & Javier, S.
2016. Differential protein expression in the hemolymph of Bithynia siamensis goniomphalos infected with Opisthorchis viverrini. PLOS
Neglected Tropical Disease 2016: 1-20.
Vieira, T.C.R.G., Costa Filho, A.,
Salgado, N.C., Allodi, S., Valente, A.P., Nasciutti, L.E. & Silva, L.C.
2004. Acharan sulfate, the new glycosaminoglycan from Achatina fulica Bowdich 1822. Structural heterogeneity, metabolic
labeling and localization in the body, mucus and the organic shell matrix. European Journal of Biochemistry 271:
845-854.
Ulagesan, S. & Kim, H.J. 2018. Antibacterial and
antifungal activities of proteins extracted from seven different snails. Applied Sciences 8(8): 1362.
WHO. 2014. Global
Tuberculosis Report. WHO Press.
Zhong, J., Wang, W., Yang, X., Yan, X. & Liu, R. 2013. A
novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 39: 1-5.
Zhuang, J., Coates, C.J., Zhu, H., Zhu, P., Wu, Z. &
Xie, L. 2015. Identification of candidate antimicrobial peptides derived from
abalone hemocyanin. Developmental and
Comparative Immunology 49: 96-102.
*Corresponding author; email:
yusupsubagiosutanto@gmail.com
|