Sains Malaysiana 50(11)(2021): 3405-3420

http://doi.org/10.17576/jsm-2021-5011-24

 

 

Wavelet Characterizations for Investigating Nonlinear Oscillators

(Pencirian Gelombang Kecil untuk Mengakaji Pengayun Tak Linear)

 

MOHD AFTAR ABU BAKAR1, NORATIQAH MOHD ARIFF1*, ANDREW V. METCALFE2 & DAVID A. GREEN2

 

1Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Mathematical Sciences, Faculty of Engineering, Computer and Mathematical Sciences, University of Adelaide, 5005, South Australia, Australia

 

Received: 27 August 2020/Accepted: 3 March 2021

 

ABSTRACT

This study investigates the wavelet-based system identification capabilities on determining the system nonlinearity based on the system impulse response function. Wavelet estimates of the instantaneous envelopes and instantaneous frequency are used to plot the system backbone curve. This wavelet estimate is then used to estimate the values of the parameter for the system. Two weakly nonlinear oscillators, which are the Duffing and the Van der Pol oscillators, have been analyzed using this wavelet approach. A case study based on a model of an oscillating flap wave energy converter (OFWEC) was also discussed in this study. Based on the results, it was shown that this technique is recommended for nonlinear system identification provided the impulse response of the system can be captured. This technique is also suitable when the system's form is unknown and for estimating the instantaneous frequency even when the impulse responses were polluted with noise.

 

Keywords: Nonlinear oscillator; system identification; wavelet; wave energy converter

 

ABSTRAK

Penyelidikan ini telah mengkaji kemampuan pengecaman sistem berasaskan gelombang kecil untuk menentukan ketaklinearan sesuatu sistem berdasarkan fungsi sambutan dedenyut sistem tersebut. Anggaran sampul seketika dan frekuensi seketika oleh penganggar gelombang kecil digunakan untuk memplot lengkung tulang belakang sistem tersebut. Penganggar gelombang kecil ini digunakan untuk menganggarkan nilai parameter bagi sistem tersebut. Dua jenis pengayun tak linear, iaitu pengayun Duffing dan Van der Pol, telah dianalisis menggunakan kaedah ini. Satu kajian kes berdasarkan model penukar tenaga ombak jenis pengayun berkibas (OFWEC) turut dibincangkan dalam kajian ini. Berdasarkan keputusan yang diperoleh, didapati bahawa teknik ini sesuai digunakan untuk pengecaman sistem tak linear apabila sambutan dedenyut sistem tersebut boleh diperoleh. Teknik ini juga sesuai digunakan apabila bentuk sesuatu sistem itu tidak diketahui dan juga untuk menganggarkan frekuensi serta-merta walaupun dedenyut sistem dicemari dengan hingar.

 

Kata kunci: Gelombang kecil; pengayun tak linear; pengecaman sistem; penukar tenaga ombak

 

REFERENCES

Bakar, M.A.A., Green, D.A., Metcalfe, A.V. & Ariff, N.M. 2014. Unscented Kalman filtering for wave energy converters system identification. AIP Conference Proceedings: Proceedings of the 3rd International Conference on Mathematical Sciences 1602: 304-310.

Bakar, M.A.A., Green, D.A., Metcalfe, A.V. & Najafian, G. 2013. Comparison of heaving buoy and oscillating flap wave energy converters. AIP Conference Proceedings: Proceedings of the 20th National Symposium on Mathematical Sciences 1522: 86-101.

Bakar, M.A.A., Green, D.A. & Metcalfe, A.V. 2012. Comparison of spectral and wavelet estimators of transfer function for linear systems. East Asian Journal on Applied Mathematics 2(3): 214-237.

Carmona, R., Torrésani, B., Whitcher, B., Wang, A., Hwang, W.L. & Lees, J.M. 2018. Rwave: Time-Frequency Analysis of 1-D Signals. R package version 2.4-8.

Carmona, R., Hwang, W.L. & Torrésani, B. 1998. Practical Time-Frequency Analysis: Gabor and Wavelet Transforms, with an Implementation in S. New York: Academic Press.

Carmona, R., Hwang, W.L. & Torrésani, B. 1997. Characterization of signals by the ridges of their wavelet transforms. IEEE Transactions on Signal Processing 45(10): 2586-2590.

Feldman, M. 1994. Non-linear system vibration analysis using Hilbert transform--I. Free vibration analysis method ’Freevib’. Mechanical Systems and Signal Processing 8(2): 119-127.

Folley, M., Whittaker, T. & Van't Hoff, J. 2007. The design of small seabed mounted bottom hinged wave energy converters. 7th European Wave and Tidal Energy Conference, Porto, Portugal. 11-13 September.

Gouttebroze, S. & Lardies, J. 2001. On using the wavelet transform in modal analysis. Mechanics Research Communications 28(5): 561-569.

Hardle, W., Kerkyacharian, G., Picard, D. & Tsybakov, A. 1998. Wavelets, Approximation and Statistical Applications. New York: Springer-Verlag.

Kijewski, T. & Kareem, A. 2003. Wavelet transforms for system identification in civil engineering. Computer-Aided Civil and Infrastructure Engineering 18(5): 339-355.

Lin, C.S. & Lin, M.H. 2020. System identification from stationary ambient response using wavelet analysis with variable modal scales. Archive of Applied Mechanics. Online First https://link.springer.com/article/10.1007%2Fs00419-020-01792-2.

Londoño, J.M., Neild, S.A. & Cooper, J.E. 2015. Identification of backbone curves of nonlinear systems from resonance decay responses. Journal of Sound and Vibration 348: 224-238.

McCusker, J.R., Danai, K. & Kazmer, D.O. 2010. Validation of dynamic models in the time-scale domain. Journal of Dynamic Systems, Measurement, and Control 132(6): 061402.

Mohammed, S.A., Bakar, M.A.A. & Ariff, N.M. 2020. Volatility forecasting of financial time series using wavelet based exponential generalized autoregressive conditional heteroscedasticity model. Communications in Statistics - Theory and Methods 49(1): 178-188.

Moradi, L., Mohammadi, F. & Baleanu, D. 2019. A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets. Journal of Vibration and Control 25(2): 310-324.

Morison, J., Johnson, J. & Schaaf, S. 1950. The force exerted by surface waves on piles. Journal of Petroleum Technology 2(5): 149-154.

Nayfeh, A.H. 2008. Perturbation Methods. Weinheim: Wiley-VCH.

Olsson, D.M. & Nelson, L.S. 1975. The Nelder-Mead simplex procedure for function minimization. Technometrics 17(1): 45-51.

Perez-Ramirez, C.A., Jaen-Cuellar, A.Y., Valtierra-Rodriguez, M., Dominguez-Gonzalez, A., Osornio-Rios, R.A., Romero-Troncoso, R.D.J. & Amezquita-Sanchez, J.P. 2017. A two-step strategy for system identification of civil structures for structural health monitoring using wavelet transform and genetic algorithms. Applied Sciences 7(2): 111.

Pernot, S. & Lamarque, C.H. 2001. A wavelet-galerkin procedure to investigate time-periodic systems: Transient vibration and stability analysis. Journal of Sound and Vibration 245(5): 845-875.

Pirboudaghi, S., Tarinejad, R. & Alami, M.T. 2018. Damage detection based on system identification of concrete dams using an extended finite element–wavelet transform coupled procedure. Journal of Vibration and Control 24(18): 4226-4246.

Ruzzene, M., Fasana, A., Garibaldi, L. & Piombo, B. 1997. Natural frequencies and dampings identification using wavelet transform: Application to real data. Mechanical Systems and Signal Processing 11(2): 207-218.

Spina, D., Valente, C. & Tomlinson, G. 1996. A new procedure for detecting nonlinearity from transient data using the Gabor transform. Nonlinear Dynamics 11(3): 235-254.

Staszewski, W.J. 2000. Analysis of non-linear systems using wavelets. Proceedings of the Institution of Mechanical Engineers – Part C – Journal of Mechanical Engineering Science 214(11): 1339-1353.

Staszewski, W.J. 1998. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. Journal of Sound and Vibration 214(4): 639-658.

Staszewski, W.J. 1997. Identification of damping in MDOF systems using time-scale decomposition. Journal of Sound and Vibration 203(2): 283-305.

Strogatz, S.H. 2000. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. New York: CRC Press.

Swaidan, W. & Hussin, A. 2016. Haar wavelet method for constrained nonlinear optimal control problems with application to production inventory model. Sains Malaysiana 45(2): 305-313.

Wang, Y. 2017. A new concept using LSTM neural networks for dynamic system identification. 2017 American Control Conference (ACC), Seattle, WA, USA. 24-26 May. pp. 5324-5329.

Whittaker, T. & Folley, M. 2012. Nearshore oscillating wave surge converters and the development of oyster. Philosophical Transactions of The Royal Society A 370: 345-364.

Woo, J., Park, J., Yu, C. & Kim, N. 2018. Dynamic model identification of unmanned surface vehicles using deep learning network. Applied Ocean Research 78: 123-133.

Yu, Y., Shenoi, R.A., Zhu, H. & Xia, L. 2006. Using wavelet transforms to analyze nonlinear ship rolling and heave-roll coupling. Ocean Engineering 33(7): 912-926.

Zhang, G., Tang, B. & Chen, Z. 2019. Operational modal parameter identification based on PCA-CWT. Measurement 139: 334-345.

 

*Corresponding author; email: tqah@ukm.edu.my

 

 

 

previous