Sains
Malaysiana 50(11)(2021): 3439-3453
http://doi.org/10.17576/jsm-2021-5011-26
The
Transmission Dynamic of the COVID 19 Outbreak: A Predictive Dashboard
(Dinamik Penyebaran Wabak COVID 19: Suatu Ramalan Papan Pemuka)
MUHAMMAD
FAHMI BIN AHMAD ZUBER1, NORHAYATI ROSLI1* & NORYANTI
MUHAMMAD1,2
1Centre for Mathematical Sciences, College
of Computing, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul
Makmur, Malaysia
2Centre of Excellence for Data Science
& Artificial Intelligence, Universiti Malaysia Pahang, Lebuhraya Tun Razak,
26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
Received:
22 April 2021/Accepted: 21 September 2021
ABSTRACT
COVID 19 outbreak gives a great impact
worldwide. The disaster of this pandemic has resulted in a large number of
human lives being lost. As all countries implemented quarantine and social
distancing, the great lockdown all over the world lead to multiple crises
including health, economy, financial, and collapse in industrial and
educational activities. Movement Control Order (MCO) and social distancing
which have been implemented as control measures in Malaysia also affected many
sectors. The landscape now has successfully reduced the number of infected
people. However, from the economic point of view, the Retail Group Malaysia
(RGM) has projected the country’s retail industry suffers a negative growth
rate for the first time in 22 years. If the epidemic continues, society will
reach an impasse, a time when the lockdown will become more than some of them
can tolerate. As recognized by the World Health Organization (WHO), modelling
the outbreak based on the prior input data is more appropriate than the ‘risk
of bias’ for decision-makers. Thus, this research is conducted to model the
outbreak of the disease using the susceptible-infected-recovery-death (SIRD)
compartmental model accompanying with the varying infection rate due to changes
in MCO measures. The model assumes under the unavailability of the vaccine,
recovered people can be reinfected. The epidemic parameters and reproduction
numbers are estimated and fitted from the transmission model to the actual data
using the Monte Carlo Markov Chain (MCMC) of Metropolis-Hasting. The model is
solved using a numerical algorithm of the Runge-Kutta method. The predictive
dashboard of a graphical user interface (GUI) is developed, hence monitoring
and predicting the outbreak under the control measures of the two different
types of MCO scenarios (which are called constant and alternate scenarios) can
be performed. GUI for the dynamic transmission of the COVID 19 provides insight
for the future outbreak, hence may help the respective stakeholders to propose
the best policy of a new norm for all sectors. From the GUI, we can see that,
when no or loose MCO is implemented or compliance of the public to the COVID 19
standard operating procedure (SOP), the infected case will increase rapidly up
to 7.5 million. With strict MCO regulation or public obedient to the SOP, the
infected case will decrease rapidly, but even after a long period of strict
regulation, once the quarantine is stopped, the infected case will rise again.
An alternative MCO scenario is suggested where a cyclic pattern of strict and
loose MCO regulation is upheld, and it shows to flatten the curve while allow
periods of less restricted lifestyle. This can be one of the alternatives to
balance the life and livelihood.
Keywords: COVID 19; modelling; Monte Carlo
Markov Chain; reproduction number; Runge-Kutta
ABSTRAK
Wabak COVID 19 memberi kesan yang besar
kepada seluruh dunia. Kemusnahan daripada wabak ini telah mengakibatkan banyak
kematian. Semua negara melaksanakan kuarantin, penjarakan sosial dan penutupan
negara di seluruh dunia yang akhirnya menyebabkan pelbagai krisis termasuk
kesihatan, ekonomi, kewangan dan kelumpuhan sektor industri serta pendidikan.
Perintah Kawalan Pergerakan (MCO) dan penjarakan sosial yang telah dilaksanakan
sebagai langkah kawalan di Malaysia juga mempengaruhi banyak sektor. Landskap
kini berjaya mengurangkan bilangan yang dijangkiti. Namun, dari sudut ekonomi,
Kumpulan Peruncitan Malaysia (RGM) telah mengunjurkan industri runcit negara
kini mengalami kadar pertumbuhan negatif untuk pertama kalinya dalam tempoh 22
tahun. Sekiranya wabak ini berlanjutan, masyarakat akan menemui jalan buntu
dengan penutupan pelbagai sektor tidak lagi dapat ditoleransi oleh mereka.
Seperti yang diakui oleh Organisasi Kesihatan Sedunia (WHO), pemodelan
berdasarkan input data yang ada adalah lebih baik daripada 'risiko pincangan'
oleh pembuat keputusan tanpa menggunakan model ramalan. Oleh itu, penyelidikan
ini dilakukan untuk memodelkan epidemik penyakit ini menggunakan model SIRD
dengan kadar jangkitan yang berbeza-beza susulan daripada perubahan MCO. Model
ini mengandaikan dengan ketiadaan vaksin, orang yang pulih dapat dijangkiti
semula. Parameter epidemik dan nombor reproduksi dianggar dan disuaikan dengan
data sebenar menggunakan kaedah Monte
Carlo Markov Chain (MCMC) Metropolis-Hasting. Penyelesaian model
dihitung menggunakan algoritma kaedah berangka Runge-Kutta. Antara muka
pengguna grafikal (GUI) dibangunkan bagi peramalan epidemik mengikut dua
situasi MCO yang berbeza (situasi tetap dan gantian). GUI bagi transmisi
dinamik COVID 19 memberikan gambaran berkaitan keadaan wabak pada masa hadapan,
seterusnya dapat membantu pihak berkepentingan untuk mengusulkan kaedah norma
baharu yang terbaik bagi semua sektor. Daripada GUI, apabila tiada atau hampir
tiada penguatkuasaan MCO atau ketidakpatuhan rakyat kepada prosedur operasi
piawai (SOP), kes keberjangkitan meningkat sehingga mencecah 7.5 juta kes.
Apabila MCO dikuatkuasakan secara ketat atau kepatuhan rakyat kepada SOP, kes
akan menurun secara mendadak, tetapi walaupun setelah menjalankan kuarantin
selama tempoh yang panjang, sejurus selepas kuarantin diberhentikan, kes akan
meningkat sekali lagi. Suatu cadangan diketengahkan iaitu kekerasan MCO
dilakukan secara berfasa berulang alik. Menggunakan kaedah ini, kes positif
dapat diratakan manakala wujud tempoh dengan cara hidup yang kurang terikat
dibenarkan. Ini boleh menjadi suatu alternatif bagi mengimbangi kehidupan dan punca
pendapatan.
Kata kunci: COVID 19; Monte Carlo Markov Chain; nombor reproduksi; pemodelan;
Runge-Kutta
REFERENCES
Adam,
D.C., Wu, P., Wong, J.Y., Lau, E.H., Tsang, T.K., Cauchemez, S., Leung, M.G.
& Cowling, B.J. 2020. Clustering and superspreading potential of SARS-CoV-2
infections in Hong Kong. Nature Medicine 26(11): 1714-1719.
Anastassopoulou,
C., Russo, L., Tsakris, A. & Siettos, C. 2020. Data-based analysis,
modelling and forecasting of the COVID-19 outbreak. PLoS ONE 15(3):
e0230405.
Azar,
K.M., Shen, Z., Romanelli, R.J., Lockhart, S.H., Smits, K., Robinson, S.,
Brown, S. & Pressman, A.R. 2020. Disparities in outcomes among COVID-19
patients in a large health care system in California. Health Affairs
(Millwood) 39(7): 1253-1262.
Bai,
Y., Yao, L., Wei, T., Tian, F., Jin, D.Y., Chen, L. & Wang, M. 2020.
Presumed asymptomatic carrier transmission of COVID-19. JAMA 323(14):
1406-1407.
Hao,
X. & Yan, H. 2020. Simulating the infected population and spread trend of
2019-nCov under different policy by EIR model. preprint MedRxiv 2020.02.10.20021519.
Imai,
N., Cori, A., Dorigatti, I., Baguelin, M., Donnelly, C.A., Riley, S. &
Ferguson, N.M. 2020. Report 3: Transmissibility of 2019-nCoV. Imperial
College London. pp. 1-6.
Leung,
K., Wu, J.T., Liu, D. & Leung, G.M. 2020. First-wave COVID-19
transmissibility and severity in China outside Hubei after control measures,
and second-wave scenario planning: A modelling impact assessment. The Lancet 395(10233): 1382-1393.
Rajesh,
S. & Adhikari, R. 2020. Age-structured impact of social distancing on the
COVID-19 epidemic in India. arXiv preprint arXiv 2003: 12055.
Read,
J.M., Bridgen, J.R., Cummings, D.A., Ho, A. & Jewell, C.P. 2020. Novel
coronavirus 2019-nCoV: Early estimation of epidemiological parameters and
epidemic predictions. preprint MedRxiv 2020.01.23.20018549.
Tang,
B., Wang, X., Li, Q., Bragazzi, N.L., Tang, S., Xiao, Y. & Wu, J. 2020a.
Estimation of the transmission risk of the 2019-nCoV and its implication for
public health interventions. Journal of Clinical Medicine 9(2): 462.
Tang,
B., Bragazzi, N.L., Li, Q., Tang, S., Xiao, Y. & Wu, J. 2020b. An updated
estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infectious
Disease Modelling 5: 248-255.
Weston,
S. & Frieman, M.B. 2020. COVID-19: knowns, unknowns, and questions. mSphere 5(2): e00203-20.
You,
C., Deng, Y., Hu, W., Sun, J., Lin, Q., Zhou, F., Pang, C.H., Zhang, Y., Chen,
Z. & Zhou, X.H. 2020. Estimation of the time-varying reproduction number of
COVID-19 outbreak in China. International Journal of Hygiene and
Environmental Health 228: 113555.
Zhang,
S., Diao, M., Yu, W., Pei, L., Lin, Z. & Chen, D. 2020. Estimation of the
reproductive number of novel coronavirus (COVID-19) and the probable outbreak
size on the Diamond Princess cruise ship: A data-driven analysis. International
Journal of Infectious Diseases 93: 201-204.
Zhuang,
Z., Zhao, S., Lin, Q., Cao, P., Lou, Y., Yang, L., Yang, S., He, D. & Xiao,
L. 2020. Preliminary estimates of the reproduction number of the coronavirus
disease (COVID-19) outbreak in Republic of Korea and Italy by 5 March 2020. International
Journal of Infectious Diseases 95: 308-310.
*Corresponding
author; email: norhayati@ump.edu.my
|