Sains Malaysiana 50(12)(2021): 3481-3491
http://doi.org/10.17576/jsm-2021-5012-02
Carbon-Ion Beam Radiosensitivity Study and Biological Responses of High-Yielding Rice Line,
MR219-PL-5
(Kajian Radiopekaan Sinar Ion Karbon dan Tindak Balas Biologi Titisan Padi Berhasil Tinggi, MR219-PL-5)
ASRAPIL WAITUL FIFIKA1,
ASMUNI MOHD IKMAL1, AHMAD FAIZ2, HASAN NOR’AISHAH3,
HARUN ABDUL RAHIM2, HUSSEIN SOBRI2 & ABD AZIZ
SHAMSUDIN NORAZIYAH1*
1Department
of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Agrotechnology
and Biosciences Division, Malaysian Nuclear Agency Bangi,
43000 Kajang, Selangor Darul Ehsan, Malaysia
3Faculty
of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan Kampus Kuala Pilah, Negeri Sembilan, Malaysia
Received: 26 October 2020/Accepted:
14 April 2021
ABSTRACT
The
carbon ion-beam has emerged as a novel physical mutagen for creating genetic
variability and crop improvement. In this study, seeds of a high-yielding
pyramided rice line MR219-PL-5 were exposed to carbon ion beam irradiation at
10, 20, 40, 60, 80, and 100 Gy. The radiosensitivity test was conducted to determine the
optimum dose of carbon ion beam irradiation based on the lethal dose 50% (LD50)
using Sandwich Blotter Technique. The biological responses of carbon-ion beam
irradiation were also observed in other characteristics such as germination
rate (GeR), survival rate (SR), growth rate (GRoR), shoot length (SL), root length (RL), seedling height
(SH), days to flowering (DTF), fertility rate (FR) and thousand-grains weight
(TGW). Based on the polynomial curve of SR graph, the lethal dose 50% (LD50)
value was 86.12 Gy. However, the optimum dose range
of carbon ion-beam irradiation was between 40 and 60 Gy as these two doses recorded the highest SR, 63 and 67%, respectively.
Furthermore, the shoulder dose in this study was 60 Gy since SR decreased significantly at higher doses. M1 individuals
irradiated at 40 and 60 Gy had the best biological
responses where significant differences were found for SR, SL, RL, GRoR, SH, DTF and FR at these two doses compared to the
other doses. Further studies on M2 and M3 populations
could help to identify potential individuals as well as to understand the
inheritance of each trait of interest from one generation to the next.
Keywords:
Biological response; carbon-ion beam; mutation breeding; optimum dose; rice
ABSTRAK
Sinar ion karbon telah berkembang sebagai mutagen fizikal baru untuk mewujudkan kepelbagaian genetik dan penambahbaikan tanaman. Dalam kajian ini, biji benih titisan piramid padi MR219-PL-5 telah didedahkan kepada pancaran sinar ion karbon pada 10, 20, 40,
60, 80 dan 100 Gy. Ujian radiopekaan telah dijalankan untuk mengenal pasti dos optimum pancaran sinar ion karbon berdasarkan dos maut 50% (LD50) menggunakan Teknik Sandwich Blotter. Tindak balas biologi pancaran sinar karbon ion juga diperhatikan bagi ciri-ciri seperti kadar percambahan (GeR), kadar kemandirian (SR), kadar pertumbuhan (GRoR), panjang pucuk (SL), panjang akar (RL), tinggi anak pokok (SH), bilangan hari berbunga (DTF), kadar kesuburan (FR) dan berat seribu-bijian (TGW). Berdasarkan graf polinomial SR, nilai dos maut 50% (LD50) adalah pada 86.12 Gy. Walau bagaimanapun, julat dos optimum sinaran pancaran ion karbon dipilih pada dos antara 40 dan 60 Gy kerana kedua-dua dos ini masing-masing mencatatkan SR tertinggi, 63 dan
67%. Selanjutnya, dos bahu dalam kajian ini adalah 60 Gy kerana SR menurun dengan ketara pada dos yang lebih tinggi. Sejajar dengan hasil LD50, individu M1 yang disinari pada 40 dan 60 Gy mempunyai tindak balas biologi terbaik berdasarkan tindak balas biologi pada keturunan M1 dengan perbezaan yang signifikan didapati untuk SR, SL, RL, GRoR, SH, DTF dan FR pada kedua-dua dos ini berbanding dengan dos-dos yang lain. Kajian lanjutan tentang populasi M2 dan M3 dapat membantu mengenal pasti individu mutan berpotensi dan memahami keterwarisan setiap ciri yang diingini daripada satu generasi ke generasi berikutnya.
Kata kunci: Alur ion karbon; biak baka mutasi;
dos optimum; padi; tindak balas biologi
REFERENCES
Abe, T., Kazama, Y., Ichida, H.,
Hayashi, Y., Ryuto, H. & Fukunishi,
N. 2007. Plant breeding using the ion beam irradiation in RIKEN. In Proceedings of the 18th International
Conference on Cyclotrons and Their Applications CYCLOTRONS 2007. Saitama,
Japan. pp. 222-224.
Awan, M.A. & Bari, G. 1979.
Mutagenic effects of fast neutrons and gamma rays in rice. Nucleus 16(1/2): 33-38.
Department of Agriculture Malaysia (DoA). 2018. Maklumat pertanian - aktiviti dan sumber.
http://www.doa.gov.my/index.php/pages/view/623. Accessed on 20 October 2020.
Gowthami,
R., Vanniarajan, C., Souframanien,
J. & Pillai, A.M. 2017. Comparison of radiosensitivity of two rice (Oryza sativa L.)
varieties to gamma rays and electron beam in M1 generation. Electronic Journal of Plant Breeding 8(3): 732-741.
Gregory, W.C. 1972. Manual on
mutation breeding. Journal of Nuclear
Energy 26(8): 443-444.
Hidema,
J., Yamoto, M., Kumagai,
T., Hase, K., Sakamoto, A. & Tanaka, A. 2003.
Biological effects of carbon ion on rice (Oryza
sativa L.). Review-Japan Atomic
Energy Research Institute 2003-033: 85-87.
Hussein, S., Harun, A.R., Simoli, J.M.A., Wahab, M.R.A., Salleh, S., Ahmad, F., Hoe,
P.C.K., Rahman, S.A.A., Ahmad NAzrul, A.W., Nordin, L., Tanaka, A., Kiong,
A.L.P., Yian, K.R., Yusop,
M.R., Ilyani, A., Kogeethavani,
R., Hase, Y., Koike, A., Noorman Affendi, M., Kamaruzaman,
R., Hassan, N.A., Shamsudin, N.A.A. & Hashim,
N.M. 2020. Mutation breeding of rice for sustainable agriculture in Malaysia.
In Mutation Breeding of Rice for
Sustainable Agriculture Mutation Breeding Project Forum for Nuclear Cooperation
in Asia (FNCA). Takasaki Advanced Radiation Research Institute, Japan. pp.
30-58.
Ibrahim, R., Harun, A.R., Hussien, S., Mat Zin, A., Othman, S., Mahmud, M., Yusof,
M.R., Nahar, S.H.M., Kamaruddin, Z.S. & Ana Ling,
P.K. 2013. Application of mutation techniques and biotechnology for minimal
water requirement and improvement of amylose content in rice. In FNCA Mutation Breeding Project. Takasaki
Advanced Radiation Research Institute, Japan. pp. 46-59.
Ikmal,
A.M., Noraziyah, A.A.S., Ellina,
Z.P.D., Tuan Nur Aqlili Riana, T.A., Amira, I., Wickneswari, R. & Aishah, Z.S. 2020.
Genotype-by-environment interaction and stability analysis of qDTYs pyramided
rice (Oryza sativa) lines under
water-limited environments. International
Journal of Agriculture and Biology 24(6): 1835-1844.
Ikmal,
A.M. Nurasyikin, N., Tuan Nur Aqlili Riana, T.A., Ellina, Z.P.D., Wickneswari,
R. & Noraziyah, A.A.S. 2019. Drought yield QTL (qDTY) with consistent
effects on morphological and agronomical traits of two populations of new rice
(Oryza sativa) lines. Plants 8(6): 186.
Ikmal,
A.M., Nurasyikin, Z., Kumar, A. & Noraziyah, A.A.S. 2018. Evaluation of morpho-physiological
traits of MRQ74 pyramided lines with drought yield QTLs. Euphytica 214(6): 98.
Jones, H.E., West, H.M.,
Chamberlain, P.M., Parekh, N.R., Beresford, N.A. & Crout,
N.M.J. 2004. Effects of gamma irradiation on Holcus lanatus (Yorkshire fog grass) and
associated soil microorganisms. Journal
of Environmental Radioactive 74(1-3): 57-71.
Kalimullah,
M., Gaikwad, J.U., Thomas, S., Sarma, A. &
Vidyasagar, P.B. 2003. Assessment of 1H heavy ion irradiation
induced effects in the development of rice (Oryza
sativa L.) seedlings. Plant Science 165(3): 447-454.
Khadimi,
A.A., Alhasnawi, A.N., Isahak,
A., Ashraf, M.F., Mohamad, A., Yusoff, W.M.W. & Radziah, M.Z. 2016. Gamma radiosensitivity study on MRQ74 and MR269, two elite varieties of rice (Oryza sativa L.). Life
Science Journal 13(2): 86-91.
Kim, J.H., Baek,
M.H., Chung, B.Y., Wi, S.G. & Kim, J.S. 2004. Alterations in the
photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma
irradiated seeds. Journal of Plant
Biology 47(2): 314-321.
Ling, A.P.K., Ung, Y.C., Hussein,
S., Harun, A.R., Tanaka, A. & Yoshihiro, H. 2013. Morphological and
biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation. Journal of Zhejiang University Science B 14(12): 1132-1143.
Long, S.P., Zhu, X.G., Naidu, S.L.
& Ort, D.R. 2006. Can improvement in photosynthesis increase crop yields. Plant Cell Environmental 29(3): 315-330.
Luo, J., Hu, P.S., Tang, S.Q., Jiao, G.A. & Shao, G.N. 2013. Mutation breeding project: Sub-project on composition or quality in rice China, achievement sub-project on composition or quality in rice (2007-2012), mutation breeding project, forum for Nuclear Cooperation in Asia (FNCA), FNCA/MEXT Technical Material, Japan. pp. 11-20. http://www.fnca.mext.go.jp/english/mb/rice/e_rice.html.
Magori,
S., Tanaka, A. & Kawaguchi, M. 2010. Induced mutation. In The Handbook of Plant Mutation Screening, edited
by Kahl, G. & Meksen, K. New York: John Wiley
& Sons. pp. 1-16.
Mamun, A.N.K., Azad, A.K., Kabir,
M.H., Roy, P.K., Islam, M.R., Jahan, M.T., Azam, M.A., Hakim, M.L. & Ahmed,
G. 2013. High yielding mutants with shorter life cycle selected in rice
irradiated with carbon ion beam. In Mutation
Breeding of Rice for Sustainable Agriculture Mutation Breeding Project Forum
for Nuclear Cooperation in Asia (FNCA). Takasaki Advanced Radiation
Research Institute, Japan. pp. 2-10.
Myhill,
R.R. & Konzak, C.F. 1967. A new technique for
culturing and measuring barley seedlings. Crop
Science 7(3): 275-277.
Oladosu,
Y., Rafii, M.Y., Abdullah, N., Abdul Malek, M.,
Rahim, H.A., Hussin, G., Abdul Latif, M. &
Kareem, I. 2014. Genetic variability and selection criteria in rice mutant
lines as a revealed by quantitative traits. Scientific
World Journal 2014: 190531.
Preuss, S.B. & Britt, A.B. 2003.
A DNA-damage induced cell cycle checkpoint in Arabidopsis. Genetics 164(1): 323-334.
Saweho,
M.F., Purwanto, E. & Yunus,
A. 2019. The short-stemmed selection of M4 generation of Mentik Susu rice mutants as irradiation result with 200 gray gamma rays. Earth
and Environmental Science 250(1): 012034.
Shamsudin,
N.A.A., Swamy, B.P.M., Ratnam, W., Cruz, M.T.S., Sandhu, N., Raman, A.K. &
Kumar, A. 2016. Pyramiding of drought yield QTLs into a high-quality Malaysian
rice cultivar MRQ74 improves yield under reproductive stage drought. Rice 9(1): 1-13.
Sjahril,
R., Riadi, M., Rafiuddin,
Sato, T., Toriyama, K., Abe, T. & Trisnawaty, A.R. 2018. Effect of heavy ion beam irradiation
on germination of local Toraja rice seed (M1-M2)
mutant generation. Conference Series:
Earth and Environmental Science 157(1): 012046.
Tanaka, A., Nozawa, S., Hase, Y., Narumi, I., Ishikawa, H. & Koike, A. 2010.
Ion beam irradiation with rice seeds for the mutation breeding project of the
forum for nuclear cooperation in Asia (FNCA). In FNCA Mutation Breeding Project Takasaki Advanced Radiation Research
Institute, Japan. p. 61.
Tanaka, A., Kobayashi, Y., Hase, Y. & Watanabe, H. 2002. Positional effect of cell
inactivation on root gravitropism using heavy ion microbeams. Journal of Experimental Botany 53(369):
683-687.
Tanaka, A., Kawano, K. &
Yamaguchi, J. 1966. Photosynthesis, respiration and plant type of the tropical
rice plant. International Rice Research
Institute – Technology Bulletin 7: 45-46.
Ulukapi,
K. & Nasircilar, A.G. 2018. Induced mutation:
Creating genetic diversity in plants. In Genetic
Diversity in Plant Species - Characterization and Conservation, edited by
El-Esawi, M.A. Intech Open. pp. 1-15.
Vazquez-Tello, A., Uozumi, T., Hidaka, M., Kobayashi, Y. & Wanatabe, H. 2005. Effect of 12C+5 ion beam irradiation on cell viability and plant regeneration in callus,
protoplasts and cell suspensions of Lavatera thuringiaca. Plant
Cell Reproduction 16(1-2): 46-49.
Yamaguchi, H. 2013. Characteristics
of ion beams as mutagens for mutation breeding in rice and chrysanthemums -
Review. Japan Agriculture Research
Quarterly Journal 47(4): 339-346.
Yamaguchi, H. 2011. Mutational
Breeding with Ion and Gamma Rays. Japan: Chiba University Press.
Yamaguchi, H., Hase,
Y., Tanaka, A., Shikazono, N., Degi,
K., Shimizu, A. & Morishita, T. 2009. Mutagenic
effect of ion beam irradiation on rice. Breeding
Science 59(2): 169-177.
Yasmine, F., Ullah, M.A., Ahmad, F.,
Rahman, M.A. & Harun, A.R. 2019. Effect of chronic gamma radiation on three
rice varieties. Jurnal Sains Nuklear Malaysia 31(1): 1-10.
Zheng, Y., Li, S., Huang, J., Fu,
H., Zhou, L., Furusawa, Y. & Shu, Q. 2020.
Mutagenic effects of three ion beams on rice and identification of heritable
mutations by whole genome sequencing. Plants 9(55): 551.
*Corresponding author; email: nora_aziz@ukm.edu.my
|