Sains Malaysiana 50(12)(2021):
3505-3522
http://doi.org/10.17576/jsm-2021-5012-04
The
Provenance and Tectonic Settings of the Greywacke Member of the Late Neoproterozoic
Hazara Formation Lesser Himalayas, Northern Pakistan: Evidence from
Geochemistry and Petrography
(Penentuan dan Tektonik Ahli Grewake Provenans Formasi Hazara Neoproterozoik Akhir Himalaya, Utara Pakistan: Bukti daripada Geokimia dan Petrografi)
QAMAR UZ ZAMAN DAR1, PU
RENHAI1*, ZULQARNAIN SAJID2, MUBASHIR MEHMOOD3,
ABDUL WAHAB4, MUHAMMAD JEHANGIR KHAN5 & TAJJAMAL
LATIF5
1Department of Geology,
Northwest University, 710069 Xi'an, People Republic of China
2Geosciences Department, Universiti Teknologi PETRONAS,
32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
3Department of Geology,
Abdul Wali Khan University, 23130 Mardan,
Pakistan
4College of Engineering Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan,
Pahang Darul Makmur,
Malaysia
5Institute
of Geology, University of the Punjab, 54000 Lahore, Pakistan
Received: 4 November 2020/Accepted: 31 March 2021
ABSTRACT
The petrographic and geochemical analysis of the greywacke
horizon of the late Neoproterozoic Hazara Formation from the Hazara Mountains
has been investigated to determine the provenance, tectonic settings and
weathering history of the sediments. The Late Neoproterozoic Hazara Formation
is a thick sedimentary sequence comprising of greywacke, shale, argillites,
siltstone, and limestone. The greywackes are characterized by fine to
medium-grained, moderately sorted and sub-angular to sub-rounded framework
grains. They are rich in quartz, lithic fragments and clay minerals. The
petrographic investigation of the greywackes categorized them as feldspathic
greywacke in the QFR diagram. The quartz content is higher in sandstone and may
reach to 70%, which indicates a weathered felsic source. Chemical Index of
Alteration values of greywacke suggests that the source region has experienced
highly weathering conditions with a warm and moist climate. Various geochemical
interpretations, elemental ratios like Th/Sc, La/Sc,Th/Cr, and positive Eu anomalies indicate that the
greywackes of the Hazara formation derived from a felsic source and were
deposited within an active continental margin tectonic settings. The main
source area of the sediments of the greywackes was located to south to
southeast, which may possibly be the Aravali orogeny,
central Indian craton and Bundelkhand craton. Finally, the
geochemical data of the major elements point to a felsic igneous provenance for
the greywacke.
Keywords:
Geochemistry; greywacke; Hazara Formation; late neoproterozoic;
petrography
AKSTRAK
Analisis petrografi dan geokimia ufuk greiwake Formasi Hazara Neoproterozoik akhir dari Pergunungan Hazara telah dikaji untuk menentukan provenans, tetapan tektonik dan sejarah luluhawa sedimen. Formasi Hazara neoproterozoik akhir adalah urutan sedimen tebal yang terdiri daripada grewake, serpih, argilit, batu karang dan batu kapur. Grewake dicirikan oleh butiran kerangka halus hingga sederhana, tersusun dengan sederhana dan subsudut hingga subbulat. Ia kaya dengan kuarza, serpihan litik dan mineral tanah liat. Penyelidikan petrografi grewake mengkategorikannya sebagai grewake felspar dalam rajah QFR. Kandungan kuarza lebih tinggi dalam batu pasir dan mungkin mencapai 70%, yang menunjukkan sumber felsik lapuk. Indeks kimia perubahan nilai grewake menunjukkan bahawa wilayah sumbernya mengalami keadaan cuaca yang sangat panas dan lembap. Pelbagai tafsiran geokimia, nisbah unsur seperti Th/Sc, La/Sc, Th/Cr dan anomali Eu positif menunjukkan bahawa grewake pembentukan Hazara berasal daripada sumber felsik dan disimpan dalam tetapan tektonik margin benua aktif. Kawasan sumber utama sedimen grewake terletak di selatan ke tenggara, yang mungkin merupakan orogenesis Aravali, kraton India tengah dan kraton Bundelkhand. Akhirnya, data geokimia unsur-unsur utama menunjuk ke arah asal igneus felsik untuk grewake.
Kata kunci: Geokimia; grewake; pembentukan Hazara; neoproterozoik lewat; petrografi
REFERENCES
Absar, N., Raza, M., Roy, M., Naqvi, S. & Roy,
A.K. 2009. Composition and weathering conditions of Paleoproterozoic upper
crust of Bundelkhand craton, Central India: Records from geochemistry of
clastic sediments of 1.9 Ga Gwalior Group. Precambrian
Research 168(3-4): 313-329.
As-Saruri,
M.A., Rasoul, S. & Baraba,
R. 2010. Sedimentary basins of Yemen: Their tectonic development and
lithostratigraphic cover. Arab J. Geosci. 3: 515-527.
Basu, A. 1985. Reading provenance from Detrital
Quartz. In Provenance of Arenites,
edited by Zuffa, G.G. Dordrecht: Springer. pp.
231-247.
Basu, A., Young, S.W., Suttner, L.J., James, W.C. & Mack,
G.H. 1975. Re-evaluation of the use of undulatory extinction and
polycrystallinity in detrital quartz for provenance interpretation. J. Sediment. Res. 45(4): 873-882.
Bau, M. & Dulski, P. 1996.
Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters 143:
245-255.
http://dx.doi.org/10.1016/0012-821X(96)00127-6.
Bhatia, M.R. 1983. Plate
tectonics and geochemical composition of sandstones. The Journal of Geology 91(6): 611-627.
Bhatia, M.R. &
Crook, K.A. 1986. Trace element characteristics of graywackes and tectonic
setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92: 181-193.
Bossart, P., Dietrich, D., Greco, A., Ottiger, R. & Ramsay, J.G. 1988. The tectonic structure
of the Hazara‐Kashmir syntaxis, southern Himalayas, Pakistan. Tectonics 7(2): 273-297.
Butt, A.A. 1972.
Problems of stratigraphic nomenclature in the Hazara District, NWFP, Pakistan. Geological Bulletin of Punjab University 9:
65-69.
Cullers, R.L. 1994. The
controls on the major and trace element variation of shales, siltstones, and
sandstones of Pennsylvanian-Permian age from uplifted continental blocks in
Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta 58(22): 4955-4972.
Cox, R., Lowe, D.R. & Cullers,
R.L. 1995. The influence of sediment recycling and basement composition on
evolution of mudrock chemistry in the southwestern
United States. Geochim Cosmochim Acta 59(14): 2919-2940.
Dai, S., Graham, I. & Ward, C.R.
2016. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology 159: 82-95. https://doi.org/10.1016/j.coal.2016.04.005.
Dar, Q.U.Z., Renhai,
P., Ghazi, S., Sajid, Z., Wahab, A., Zubair, R.A. & Aziz, T. 2021. The
Precambrian Hazara Formation from Hazara Mountains, Northern Pakistan. Arab J. Geosci.
14: 134.
https://doi.org/10.1007/s12517-021-06496-7.
Dickinson, W.R. 1985.
Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites, edited by Zuffa, G.G. Dordrecht: Springer. pp. 333-361.
Dickinson, W.R. & Suczek, C.A. 1979. Plate tectonics and sandstone
compositions. AAPG Bulletin 63(12):
2164-2182.
Dickinson, W.R., Beard,
L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson,
R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. 1983. Provenance of North American Phanerozoic
sandstones in relation to tectonic setting. Geological Society of America Bulletin 94(2): 222-235.
Fedo, C.M., Nesbitt, H.W. & Young, G.M. 1995.
Unraveling the effects of potassium metasomatism in sedimentary rocks and
paleosols, with implications for paleoweathering conditions and provenance. Geology 23(10):
921-924.
Greco, A., Martinotti,
G., Papritz, K., Ramsay, J.G. & Rey, R. 1989. The
crystalline rocks of the Kaghan Valley (NE-Pakistan). Eclogae Geologicae Helvetiae 82(2): 629-653.
Herron, M.M. 1988.
Geochemical classification of terrigenous sands and shales from core or log
data. Journal of Sedimentary
Research 58(5): 820-829.
Holland, H.D. 1978. The Chemistry of the Atmosphere and Oceans. New
York: John Wiley & Sons Inc.
Hylland, M.D. 1990. Geology of the southern Gandghar range and Kherimar hills, Northern Pakistan. Oregon State University, M.Sc. Thesis (Unpublished).
Marks, P. & Ali,
C.M. 1961. The geology of the Abbottabad area, with special reference to the
Infra-Trias. Geological
Bulletin of Punjab University 1: 47-56.
Marston, R.J. 1978. The geochemistry
of the archaean clastic metasediments in relation to crustal evolution, northeastern Yilgarn Block, Western Australia. Precambrian
Research 6(2): 157-175.
McLennan, S., Hemming,
S., McDaniel, D. & Hanson, G. 1993. Geochemical approaches to
sedimentation, provenance, and tectonics. In Processes Controlling the Composition of Clastic Sediments, edited by Johnsson, M.J. & Basu, A.
Colorado: Geological Society of America. pp. 21-40.
Middlemiss, C.S. 1896. The
Geology of Hazara and the Black Mountain. London: Geological Survey. pp.
302.
Nesbitt, H.W. &
Young, G.M. 1996. Petrogenesis of sediments in the absence of chemical
weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 43(2): 341-358.
Nesbitt, H. & Young,
G. 1984. Prediction of some weathering trends of plutonic and volcanic rocks
based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48(7): 1523-1534.
Nesbitt, H.W. &
Young, G. 1982. Early Proterozoic climates and plate motions inferred from
major element chemistry of lutites. Nature 299: 715-717.
Pettijohn, F.J., Potter, P.E. & Siever,
R. 1972. Sand and Sandstone. New
York: Springer Science & Business Media.
Pettijohn, F.J., Potter, P.E. & Siever,
R. 1987. Sand and Sandstone. 2nd
ed. New York: Springer Science & Business Media. pp. 148-290.
Qasim, M., Ding, L., Khan, M.A., Umar, M., Jadoon, I.A., Haneef, M., Baral,
U., Cai, F., Shah, A. & Yao, W. 2018. Late Neoproterozoic-Early Palaeozoic stratigraphic succession, Western Himalaya,
North Pakistan: Detrital zircon provenance and tectonic implications. Geological Journal 53(5):
2258-2279.
Roser, B.P. & Korsch,
R.J. 1986. Determination of tectonic setting of sandstone-mudstone suites using
SiO2 content and K2O/Na2O ratio. The Journal of Geology 94(5): 635-650.
Roser, B. & Korsch, R.
1988. Provenance signatures of sandstone-mudstone suites determined using
discriminant function analysis of major-element data. Chemical Geology 67(1-2): 119-139.
Seeber, L., Armbruster, J.G. & Quittmeyer,
R.C. 1981. Seismicity and continental subduction in the Himalayan arc. In Zagros Hindukush Himalaya, Geodynamic
Evolution, edited by Gupta, H.K. & Delany, F.M. Washington DC: American Geophysical Union. pp. 215-242.
Shah, M.T. & Moon, C.J. 2004.
Mineralogy, geochemistry and genesis of the ferromanganese ores from Hazara
area NW Himalayas northern Pakistan. J.
Asian Earth Sci. 23: 1-15.
Tahirkheli, R.K. 1979. Geology of Kohistan and adjoining
Eurasian and Indo-Pakistan continents, Pakistan. Geological Bulletin (University of Peshawar) 11(1): 1-30.
Taylor, S.R. 1985. An
examination of the geochemical record preserved in sedimentary rocks, In The Continental
Crust: Its Composition and Evolution, edited by Taylor, S.R. & McLennan,
S.M. Oxford: Blackwell Scientific Publications. p. 312.
Umar, M., Betts, P.,
Khan, M.M.S., Sabir, M.A., Farooq, M., Zeb, A., Jadoon,
U.K. & Ali, S. 2015. Signatures of late Neoproterozoic Gondwana assembly
and Maronian glaciation in Lesser Himalaya: A palaeogeographical and stratigraphical approach. Acta Geologica Polonica 65(1): 1-19.
Wadia, D. 1931. The
syntaxis of the northwest Himalaya: Its rocks, tectonics and orogeny. Geological Survey of India 65(2):
189-220.
Wang, D., Wang, X.L.,
Zhou, J.C. & Shu, X.J. 2013. Unraveling the Precambrian crustal evolution
by Neoproterozoic conglomerates, Jiangnan orogen: U–Pb and Hf isotopes of
detrital zircons. Precambrian Research 233:
223-236.
Wimmenauer, W, 1984. Das pravariskische Kristallin im Schwarzwald. Fortschritt der Mineralogie 62: 69-86.
Wynne, A.B. 1878. On the
geology of the Salt Range in the Punjab. Geological
Survey of India 14: 98.
Yeats, R.S. &
Hussain, A. 1987. Timing of structural events in the Himalayan foothills of
northwestern Pakistan. Geological Society
of America Bulletin 99(2): 161-176.
Zeitler, P.K. 1985. Cooling history
of the NW Himalaya, Pakistan. Techtonics 4(1): 127-151.
*Corresponding author;
email: 552418459@qq.com
|