Sains
Malaysiana 50(12)(2021): 3583-3592
http://doi.org/10.17576/jsm-2021-5012-10
Analysis of
Biogas Production from Biomass Residue of Palm Oil Mills using an Anaerobic
Batch Test
(Analisis
Penghasilan Biogas daripada Sisa Biojisim Kilang Minyak Sawit menggunakan Ujian
Kelompok Anaerob)
NORASHIKIN AHMAD KAMAL1*, SITI NOORAIHANAH
OSMAN1, LEE DONG YEOL2 & MARFIAH AB WAHID1
1Faculty of Civil Engineering, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
2GS E&C,
Seoul, South Korea
Received:
5 July 2020/Accepted: 4 April 2021
ABSTRACT
The Malaysian palm oil
industry has grown rapidly due to Malaysia’s tropical weather and suitable
terrain. Palm oil production is now categorized as the most significant
agriculture-based industry in the country. Along with strong economic returns,
the palm oil industry also generates an abundance of waste products, including
empty fruit bunches (EFB) (23%), mesocarp fibre (12%), shells (5%) and palm oil
mill effluent (POME) (60%) for every batch of fresh fruit bunches (FFB)
processed in the mills. This study is meant to fill the gap from previous
studies in terms of biogas productions from the POME or the combination of POME
and EFB which normally been conducted under the thermophilic conditions. The
appropriate mixture ratios between POME and EFB in anaerobic digestion will
reduce time of treatment and space if been conducted in the low temperature
(mesophilic conditions). Thus, this paper is focuses on the analysis of batch
test design which consist of low temperature (mesophilic, 20-40 °C) conditions
for evaluating the performance of biogas production from the combination of
POME and EFB in anaerobic digestion. The aim was to determine the amount of
biogas production based on different ratios of POME and EFB mixtures. Biogas 1,
containing 160 mL of fresh POME mixed with 40 g of EFB, was shredded and
blended with 1800 mL seed sludge. Biogas 2, containing 120 mL of fresh POME mixed
with 80 g of EFB, was shredded and blended with 1800 mL seed sludge. Based on
the analysis of the results, the total production of Biogas 1 was greater than
that of Biogas 2. The findings also show that the ratio of POME and 20% EFB
(Biogas 1) was more efficient in producing the biogas compared to the ratio
POME and 40% EFB (Biogas 2) under the mesophilic conditions. Thus, the
mesophilic conditions required energy saving and low-cost process, compared to
the previous studies which used the high temperature (thermophilic, 41-122 °C)
that definitely was costly and require more energy consumption. This study will
serve as preliminary results for enhancing the treatment methods use in
Malaysia and form the early basis for the development of a new technology incorporating
a combination of POME and EFB.
Keywords: Biogas production; empty fruit bunch (EFB); palm oil mill effluent
(POME)
ABSTRAK
Industri
minyak kelapa sawit Malaysia telah membangun secara pesat disebabkan oleh cuaca
tropika di Malaysia dan rupa bumi yang sesuai. Pada masa ini, penghasilan
minyak kelapa sawit telah dikategorikan sebagai industri pertanian yang
terpenting di dalam negara ini. Selain daripada pulangan ekonomi yang besar,
industri minyak kelapa sawit kaya dengan penghasilan hasil buangan, termasuk
tandan buah kosong (EFB) (23%), fiber mesokarp (12%), cangkerang (5%) dan
efluen minyak kelapa sawit (POME) (60%) untuk setiap kelompok tandan buah segar
yang diproses di kilang. Kajian ini bertujuan untuk melengkapkan kajian lepas
dari segi produksi biogas daripada penghasilan POME atau gabungan POME dan EFB
yang kebiasaannya dijalankan di bawah keadaan termofili. Nisbah campuran yang
sesuai antara POME dan EFB dalam proses pencernaan anaerob akan menurunkan masa
rawatan dan ruang sekiranya ujian ini dijalankan pada suhu yang rendah (keadaan
mesofili). Oleh itu, kajian ini adalah berfokuskan pada analisis ujian reka
bentuk kelompok yang terdiri daripada keadaan suhu rendah (mesofili, 20-40 °C)
untuk menilai prestasi penghasilan biogas daripada penggabungan POME dan EFB
dalam proses pencernaan anaerob. Tujuan kajian ini adalah untuk menentukan
jumlah penghasilan biogas berdasarkan daripada penggunaan nisbah campuran POME
dan EFB yang berbeza. Biogas 1 mempunyai 160 mL POME segar yang dicampurkan
dengan 40 g EFB, campuran ini dicincang dan dikisar dengan 1800 mL benih enap
cemar. Biogas 2 mempunyai 120 mL POME segar yang dicampurkan dengan 80 g EFB,
campuran ini dicincang dan dikisar dengan 1800 mL benih enap cemar. Berdasarkan
keputusan analisis, jumlah penghasilan Biogas 1 adalah lebih tinggi daripada
Biogas 2. Penemuan kajian juga menunjukkan bahawa nisbah POME dan 20% EFB (Biogas
1) adalah lebih cekap dalam penghasilan biogas sekiranya dibandingkan dengan
nisbah POME dan 40% EFB (Biogas 2) di bawah keadaan mesofili. Oleh itu, keadaan
mesofili adalah diperlukan atas sebab jimat tenaga dan proses yang murah jika
dibandingkan dengan kajian lepas yang menggunakan suhu tinggi (termofili,
41-122 °C) yang memerlukan penggunaan tenaga yang tinggi dan proses yang lebih
mahal.
Kata
kunci: Efluen minyak kelapa sawit (POME); penghasilan biogas; tandan buah
kosong (EFB)
REFERENCES
Ahmad, A., Ismail, S. & Bhatia, S.
2003. Water recycling from palm oil mill effluent (POME) using membrane
technology. Desalination 157(1-3):
87-95.
Baharuddin,
A.S., Hock, L.S., Yusof, M.Z., Abdul, N.A., Shah, U., Hassan, M.A., Sakai, K.
& Shirai, Y. 2010. The effect of palm oil mill effluent (POME) anaerobic
sludge from 500 m3 of closed anaerobic methane digested tank on
pressed-shredded empty fruit bunch (EFB) composting process. African Journal of Biotechnology 9(16):
2427-2436.
Bala, J.D.,
Lalung, J. & Ismail, N. 2014. Palm oil mill effluent (POME) treatment
"microbial communities in an anaerobic digester’’: A review. International Journal of Scientific and
Research Publications 4(6): 1-24.
Chaikitkaew, S.,
Kongjan, P. & O-Thong, S. 2015. Biogas production from biomass residues of
palm oil mill by solid state anaerobic digestion. Energy Procedia 79: 838-844.
Choong, C.G.
& McKay, A. 2014. Sustainability in the Malaysian palm oil industry. Journal of Cleaner Production 85:
258-264.
de Souza, W.R.
2013. Microbial degradation
of lignocellulosic biomass. In Sustainable
Degradation of Lignocellulosic Biomass-Techniques, Applications and
Commercialization, edited
by Chandel, A.K. & da Silva, S.S. United Kingdom: IntechOpen. pp. 207-247.
Enzmann, F.,
Mayer, F., Rother, M. & Holtmann, D. 2018. Methanogens: Biochemical
background and biotechnological applications. AMB Express 8(1): 1-22.
Hamzah, M.A.F.,
Jahim, M.J., Abdul, P.M. & Asis, A.J. 2019. Investigation of temperature
effect on start-up operation from anaerobic digestion of acidified palm oil
mill effluent. Energies 12(13): 2473.
Hasanudin, U.,
Sugiharto, R., Haryanto, A., Setiadi, T. & Fujie, K. 2015. Palm oil mill
effluent treatment and utilization to ensure the sustainability of palm oil
industries. Water Science and Technology 72(7): 1089-1095.
Ibrahim, A.H.,
Dahlan, I., Adlan, M.N. & Dasti, A.F. 2012. Comparative study on
characterization of Malaysian palm oil mill effluent. Research Journal of Chemical Sciences 2(12): 1-5.
Kanokwan, J., Nutthatus, C.A. &
Thunwadee, T.S. 2014. Enhancing of methane production from palm oil mill
effluent by co-digestion with empty fruit bunch pressed wastewater at
mesophilic condition using an Anaerobic batch reactor. SCIENCE PLUS International Conference. pp. 28-30.
Kavitha, B.,
Jothimani, P. & Rajannan, G. 2013. Empty fruit bunch-a potential organic
manure for agriculture. International
Journal of Science Environment 2(5): 930-937.
Kheang, L.S.,
Mohammad, N.F. & Ngan, M.A. 2009. Characterization of palm oil mill
effluent (POME) for process control baseline establishment. MPOB Information
Series, ISSN.
Mamimin, C.,
Chanthong, S., Leamdum, C., Sompong, O. & Prasertsan, P. 2021. Improvement
of empty palm fruit bunches biodegradability and biogas production by
integrating the straw mushroom cultivation as a pretreatment in the solid-state
anaerobic digestion. Bioresource
Technology 319: 124227.
Nurliyanaa,
M.Y., H’nga, P.S., Rasminaa, H., Umi Kalsomb, M.S., Chinc, K.L., Leea, S.H.,
Luma, W.C. & Khooa, G.D. 2015. Effect of C/N ratio in methane productivity
and biodegradability during facultative co-digestion of palm oil mill effluent
and empty fruit bunch. Industrial Crops
and Products 76: 409-415.
Octiva, C.S., Irvan, M., Sarah, B.,
Trisakti. & Daimon, H. 2018. Production of biogas from co-digestion of
empty fruit bunches (EFB) with palm oil mill effluent (POME): Effect of mixing
ratio. Journal of Chemistry 11(2):
791-797.
Pleanjai Somporn, H., Gheewala, S. &
Garivait, S. 2004. Environmental evaluation of biodiesel production from palm
oil in a life cycle perspective. Asian
Journal on Energy and Environment 8(1): 15-32.
Poh, P.E. &
Chong, M.F. 2010. Thermophilic palm oil mill effluent (POME) treatment using a
mixed culture cultivated from POME. Chemical
Engineering Transactions 21: 811-816.
Prasertsan, S.
& Prasertsan, P. 1996. Biomass residues from palm oil mills in Thailand: An
overview on quantity and potential usage. Biomass
and Bioenergy 11(5): 387-395.
Purnomo, A., Suprihatin, Romli, M. &
Hasanudin, U. 2018. Biogas production from oil palm empty fruit bunches of post
mushroom cultivation media. Earth and
Environmental Science 141(1): 012024.
Saelor, S.,
Kongjan, P. & Sompong, O. 2017. Biogas productions from anaerobic
co-digestion of palm oil mill effluent and empty fruit bunches. Energy Procedia 138: 717-722.
Schuchardt, F.,
Wulfert, K., Darnoko. & Herawan, T. 2008. Effect of new palm oil mill
processes on the EFB and pome utilization. Journal
of Oil Palm Research 20: 115-126.
Srisuda, C.,
Prawit, K. & Sompong, O.T. 2015. Biogas production from biomass residues of
palm oil mill by solid state anaerobic digestion. Energy Procedia 79: 838-844.
Sulaiman, F.,
Abdullah, N., Gerhauser, H. & Shariff, A. 2011. An outlook of Malaysian
energy, oil palm industry and its utilization of wastes as useful resources. Biomass and Bioenergy 35(9): 3775-3786.
Wu, T.Y.,
Mohammad, A.W., Jahim, J.M. & Anuar, N. 2010. Pollution control
technologies for the treatment of palm oil ill effluent (POME) through
end-of-pipe processes. Journal of
Environmental Management 91(7): 1467-1490.
Yacob, S.Y., Shirai, M.A., Hassan, M.,
Wakisaka. & Subash, S. 2006. Start-up operation of semi-commercial closed
anaerobic digester for palm oil mill effluent treatment. Process Biochemistry 41: 962-964.
Zhao, C. 2011. Effect of temperature on biogas
production in anaerobic treatment of domestic wastewater UASB system in
Hammarby Sjöstadsverk Chengyuan Zhao. Royal Institute of Technology (KTH). MSc
Thesis (Unpublished).
*Corresponding author; email:
norashikin7349@uitm.edu.my
|