Sains Malaysiana 50(12)(2021):
3647-3657
http://doi.org/10.17576/jsm-2021-5012-15
Fluoxetine
Affects Intestinal Motility via 5-HT3 and Muscarinic Receptors in ex vivo Mouse Model
(Kesan Fluoxetin terhadap Motiliti Usus melalui Reseptor 5-HT3 dan Bermuskarina pada Model Tikus ex vivo)
PISSARED KHUITUAN1,2*, CHOTIKA NHAEMCHEI2,3, SAKDA PRADAB2,4, SAKENA K-DA1,2 & NIPAPORN KONTHAPAKDEE1
1Division
of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai,
Songkhla, 90110, Thailand
2Gut Biology and Microbiota Research Unit, Prince of Songkla University, Hat Yai,
Songkhla 90110, Thailand
3Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
4Faculty
of Traditional Thai Medicine, Prince of Songkla University, Songkhla 90110, Thailand
Received: 6 January 2021/Accepted:
22 March 2021
ABSTRACT
Fluoxetine, a
selective serotonin reuptake inhibitor anti-depressant, causes undesirable side effects, including diarrhea and
constipation. This research investigated the direct effects of fluoxetine
at 0.001, 0.01, 0.1, 1, 10, and 100 µM on duodenal and proximal colonic tissue
contractions. The investigation aimed to determine related mechanisms using an isolated mouse
intestine model. Our study showed that fluoxetine at 0.001 μM increased the
amplitude of contraction in colonic tissue but decreased the amplitude in duodenal tissue. The direct application of higher concentrations of
fluoxetine (1, 10, and 100 µM) reduced the amplitude of contractions in proximal colonic tissue. Moreover, we found that the stimulatory effect of 0.001 µM fluoxetine on the tone of contractions could
be prevented by pre-incubating the tissue in ondansetron and atropine. Our findings suggest that the inhibition of the effect
of fluoxetine was mainly mediated via 5-HT3 receptors and muscarinic signaling. These findings might
explain the conflicting gastrointestinal symptoms caused by fluoxetine.
Keywords: Intestinal contraction; selective serotonin reuptake
inhibitor; 5-hydroxytryptamine
ABSTRAK
Fluoxetin ialah perencat pengambilan anti-depresan serotonin yang memilih, menyebabkan kesan sampingan yang tidak diingini, termasuk cirit-birit dan sembelit. Penyelidikan ini mengkaji kesan langsung fluoxetin pada 0.001, 0.01, 0.1, 1, 10 dan 100 µM
pada pengecutan tisu kolon duodenum dan proksimal. Penyelidikan bertujuan untuk menentukan mekanisme yang berkaitan dengan menggunakan model usus tikus yang terpencil. Kajian menunjukkan bahawa fluoxetin pada 0.001 μM meningkatkan amplitud penguncupan pada tisu kolon tetapi menurunkan amplitud pada tisu duodenum. Aplikasi langsung kepekatan fluoxetin yang lebih tinggi (1, 10 dan 100 µM) mengurangkan amplitud pengecutanpada tisu kolon proksimal. Selain itu, didapati bahawa kesan perangsang 0.001 µM fluoxetin
pada nadapengecutan dapat dicegah dengan pra-inkubasi tisu dalam ondansetron dan atropin. Penemuan kami menunjukkan bahawa penghambatan kesan fluoxetin terutamanya dimediasi melalui reseptor 5-HT3 dan isyarat bermuskarina. Penemuan ini dapat menjelaskan gejala gastrointestinal yang bertentangan yang disebabkan oleh fluoxetin.
Kata kunci: Pengecutan usus; perencat pengambilan serotonin selektif;
5-hidroksitriptamina
REFERENCES
Afzal, A.,
Sharif, M., Khan, A.,
Khan, B.T. & Ara, I. 2018. Fluoxetine
causes decrease in intestinal motility. International
Journal of Basic & Clinical Pharmacology 7(3):
429-432.
Bastos, A.G., Guimarães, L.S.P. & Trentini, C.M. 2013. Neurocognitive
changes in depressed patients in psychodynamic psychotherapy, therapy with
fluoxetine and combination therapy. Journal of
Affective Disorders 151(3):
1066-1075.
Burnstock, G. 1958. The effect of drugs on spontaneous motility and on response
to stimulation of the extrinsic nerves of the gut of a teleostean fish. British Journal of Pharmacology and Chemotherapy 13(3): 216-226.
Colle, R.,
Masson, P., Verstuyft, C., Fève, B., Werner, E., Boursier‐Neyret, C., Walther, B., David, D.J., Boniface, B., Falissard, B.,
Chanson, P., Corruble, E. & Becquemont, L. 2020. Peripheral
tryptophan, serotonin, kynurenine, and their metabolites in major depression: A
case-control study. Psychiatry
and Clinical Neurosciences 74(2):
112-117.
Costescu, M., Paunescu, H., Coman, O.A., Coman, L. & Fulga, I. 2019. Antidepressant
effect of the interaction of fluoxetine with granisetron. Experimental and Therapeutic Medicine 18(6): 5108-5111.
De Ponti, F. 2004. Pharmacology
of serotonin: What a clinician should know. Gut 53(10): 1520-1535.
Fan, P. &
Weight, F.F. 1994. The effect of atropine on the activation of 5-hydroxytryptamine3
channels in rat nodose ganglion neurons. Neuroscience 62(4): 1287-1292.
Gelenberg, A.J., Freeman, M.P., Markowitz, J.C., Rosenbaum, J.F., Thase, M.E.,
Trivedi, M.H. & Van Rhoads, R.S. 2010. Practice Guideline for the Treatment of Patients with Major Depressive Disorder. 3rd ed. American Psychiatric Association.
Gershon, M.D. & Tack, J. 2007. The serotonin signaling system: From
basic understanding to drug development for functional GI disorders. Gastroenterology 132(1):
397-414.
Gutierrez-Galve, L.,
Stein, A., Hanington, L., Heron, J., Lewis, G., O’Farrelly,
C. & Ramchandani, P.G. 2019. Association of maternal and paternal depression in the postnatal period with offspring
depression at age 18 years. JAMA
Psychiatry 76(3): 290-296.
Gwynne, R.M.,
Clarke, A.J., Furness, J.B. & Bornstein, J.C. 2014. Both exogenous 5-HT and endogenous 5-HT, released by fluoxetine, enhance distension evoked
propulsion in guinea-pig ileum in vitro. Frontiers in Neuroscience 8:
301.
James, S.L.,
Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., Abbastabar, H.,
Abd-Allah,
F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R.S.,
Abebe, Z., Abera, S.F., Abil, O.Z., Abraha, H.N., Abu-Raddad, L.J., Abu-Rmeileh, N.M.E., Accrombessi, M.M.K., … & Murray,
C.J.L. 2018. Global,
regional, and national incidence, prevalence, and years lived with disability
for 354 diseases and injuries for 195 countries and territories, 1990-2017: A
systematic analysis for the global burden of disease study 2017. The Lancet 392(10159): 1789-1858.
Kannen, V., Marini, T., Turatti, A.,
Carvalho, M.C., Brandão, M.L., Jabor, V.A.P., Bonato, P.S.,
Ferreira, F.R., Zanette, D.L.,
Silva, W.A. & Garcia, S.B. 2011. Fluoxetine induces preventive and complex effects against
colon cancer development in epithelial and stromal areas in rats. Toxicology Letters 204(2-3):
134-140.
K-da,
S., Peerakietkhajorn, S., Siringoringo, B., Muangnil, P., Wichienchot, S. & Khuituan, P. 2020. Oligosaccharides
from Gracilaria fisheri ameliorate gastrointestinal dysmotility and gut dysbiosis in colitis mice. Journal of Functional Foods 71: 104021.
Kashani, L., Eslatmanesh, S., Saedi, N., Niroomand, N.,
Ebrahimi, M., Hosseinian, M., Foroughifar, T., Salimi, S. & Akhondzadeh, S. 2017. Comparison
of saffron versus fluoxetine in treatment of mild to moderate postpartum
depression: A double-blind, randomized clinical trial. Pharmacopsychiatry 50(2): 64-68.
Lochner, M. & Thompson, A.J. 2016. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3
receptors. Neuropharmacology 108: 220-228.
Mawe, G.M. & Hoffman, J.M. 2013. Serotonin signaling in the gastrointestinal tract: Nature
reviews. Nature Reviews Gastroenterology & Hepatology 10(8): 473-486.
Sohel, A.J., Shutter, M.C. & Molla, M. 2020. Fluoxetine. In StatPearls. Treasure Island (FL): StatPearls Publishing.
*Corresponding
author; email: pissared.k@psu.ac.th
|