Sains Malaysiana 50(12)(2021): 3719-3732

http://doi.org/10.17576/jsm-2021-5012-21

 

Pengoptimuman Parameter bagi Selulosa Tandan Kosong Kelapa Sawit (TKKS) Teresterifikasi

(Parameter Optimization on Esterified Oil Palm Empty Fruit Bunch Cellulose (OPEFB))

 

MARHAINI MOSTAPHA1,2, FATIHAH AZAMKAMAL1, KUSHAIRI MOHD SALLEH*1, UMAR ADLI AMRAN1, SINYEE GAN3 & SARANI ZAKARIA1

 

1Bioresources & Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Higher Institution Centres of Excellence, Center for Biofuels and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

3Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Darul Ehsan, Malaysia

 

Received: 8 January 2021/Accepted: 2 April 2021

 

ABSTRAK

Pengubahsuaian kimia terhadap selulosa tandan kosong kelapa sawit (TKKS) menggunakan agen pengesteran asid etilena diamina tetraasetik (EDTA) dan asid asetik (AA) dengan parameter yang berbeza dikaji dan dioptimumkan. Pada peringkat awal, pulpa TKKS telah dirawat menggunakan empat peringkat pelunturan (D-E-E-D) untuk menghasilkan selulosa TKKS. Seterusnya, selulosa TKKS melalui proses esterifikasi menggunakan AA dan EDTA yang dibantu oleh sistem pemanasan gelombang mikro bagi tujuan penambahbaikan keberkesanan pengesteran. Pengaruh parameter pra-rawatan terhadap kestabilan termal dan perubahan kumpulan berfungsi dioptimumkan dengan menggunakan reka bentuk komposit pusat (CCD), pemodelan permukaan tindak balas (RSM) diikuti dengan analisis termogravitometri (TGA) dan analisis kumpulan berfungsi (FT-IR). Didapati terdapat perbezaan ketara (produk esterifikasi) berlaku kepada selulosa TKKS yang diubah suai menggunakan EDTA berbanding AA pada suhu yang tinggi. Data RSM menunjukkan suhu, masa, dan kepekatan bahan kimia yang dioptimumkan untuk selulosa-AA adalah pada suhu 90 °C, 46 min dan kepekatan 8.18, manakala selulosa-EDTA adalah pada suhu 100 °C, 70 min dan kepekatan 0.7. Berdasarkan analisis CCD, keputusan menunjukkan bahawa rawatan selulosa TKKS dengan agen pengesteran EDTA adalah lebih baik berbanding dengan AA.

 

Kata kunci: Asid asetik; EDTA; esterifikasi; RSM; selulosa

 

ABSTRACT

Chemical modifications of oil palm empty fruit bunch cellulose (OPEFBC) using ethylenediaminetetraacetic acid (EDTA) and acetic acid (AA) with different parameters were studied and optimized. At the initial stage, OPEFB pulp was treated using four stages of bleaching stage (D-E-E-D) for production of OPEFBC. Next, the OPEFB cellulose undergo esterification process using AA and EDTA under microwave assisted heating system to further enhance esterification. The influence of pre-treatment parameters on thermal stability and functional group changes were optimized using central composite design (CCD), response surface modelling (RSM) followed by thermogravimetric analysis (TGA) and functional group analysis (FT-IR). The results showed there were significant differences occurred on the modified OPEFB cellulose particularly by EDTA where higher thermal properties were observed with better esterification product with higher modification occurs compared to cellulose treated with AA. The RSM data showed that temperature, time, and chemicals concentrations optimized for cellulose-AA were at 90 °C, 46 min, and 8.18, respectively, while the optimum parameters for cellulose-EDTA were at 100 °C, 70 min, and 0.7 concentrations, respectively. Based on CCD analysis, the results showed that OPEFB cellulose esterified with EDTA agent is better than AA.

 

Keywords: Acetic acid; cellulose; EDTA; esterification; RSM

 

REFERENCES

Abd Wafti, N.S., Lau, H.L.N., Loh, S.K., Aziz, A.A., Ab Rahman, Z. & May, C.Y. 2017. Activated carbon from oil palm biomass as potential adsorbent for palm oil mill effluent treatment. Journal of Oil Palm Research 29(2): 278-290.

Ahluwalia, S.S. & Goyal, D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology 98(12): 2243-2257.

Ahmad, M., Ahmed, S., Swami, B.L. & Ikram, S. 2015. Adsorption of heavy metal ions: Role     of chitosan and cellulose for water treatment. International Journal of Pharmacognosy 2(6): 280-289.

Ahmad, R., Hamid, R. & Osman, S.A. 2019. Physical and chemical modifications of plant fibres for reinforcement in cementitious composites. Advances in Civil Engineering 2019: Article ID. 5185806.

Anuar, N.I.S., Zakaria, S., Gan, S., Chia, C.H., Wang, C. & Harun, J. 2019. Comparison of the morphological and mechanical properties of oil Palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Industrial Crops and Products 127: 55-65.

Asghar, A., Raman, A.A.A. & Daud, W.M.A.W. 2015. Advanced oxidation processes for in situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. Journal of Cleaner Production 87: 826-838.

Azamkamal, F., Zakaria, S., Gan, S. & Kaco, H. 2018. Chemical and thermal studies on esterification of EDTA with raw cellulose and mercerized cellulose EFB. In AIP Conference Proceedings 1940(1): 020016.

Baiya, C., Nannuan, L., Tassanapukdee, Y., Chailapakul, O. & Songsrirote, K. 2019. The synthesis of carboxymethyl cellulose based hydrogel from sugarcane bagasse using microwave assisted irradiation for selective adsorption of copper (II) ions. Environmental Progress & Sustainable Energy 38(1): 157-165.

Bewick, V., Cheek, L. & Ball, J. 2003. Statistics review 7: Correlation and regression. National Center for Biotechnology Information 7: 451-459.

Daneshfozouna, S., Nazirb, M.S., Abdullaha, B. & Abdullaha, M.A. 2014. Surface modification of celluloses extracted from oil palm empty fruit bunches for heavy metal sorption. Chemical Engineering 37: 679-683.

de Carvalho Benini, K.C.C., Pereira, P.H.F., Cioffi, M.O.H. & Voowald, H.J.C. 2017. Effect of acid hydrolysis conditions on the degradation properties of cellulose from Imperata Brasiliensis fibers. Procedia Engineering 200: 244-251.

Englert, C., Schwenke, A.M., Hoeppener, S., Weber, C. & Schubert, U.S. 2016. Microwave-assisted polymer modifications. In Microwave-Assisted Polymer Synthesis, edited by Hoogenboom, R., Schubert, U.S. & Wiesbrock, F. Switzerland: Springer Nature. hlm. 209-240.

Fathilah, W.F.W. & Othaman, R. 2019. Electrospun cellulose fibres and applications. Sains Malaysiana 48(7): 1459-1472.

Gan, S., Zakaria, S., Chia, C.H., Padzil, F.N.M. & Ng, P. 2015. Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel. Carbohydrate Polymers 115: 62-68.

Hamzah, N., Tokimatsu, K. & Yoshikawa, K. 2019. Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review. Sustainability 11(4): 1060.

Ibrahim, I., Hassan, M.A., Abd-Aziz, S., Shirai, Y., Andou, Y., Othman, M.R., Ali, A.A.M. & Zakaria, M.R. 2017. Reduction of residual pollutants from biologically treated palm oil mill effluent final discharge by steam activated bioadsorbent from oil palm biomass. Journal of Cleaner Production 141: 122-127.

Jandura, P., Riedl, B. & Kokta, B.V. 2000. Thermal degradation behavior of cellulose fibers partially esterifed with some long chain organic acids. Polymer Degradation and Stability 70: 387-394.

Khalid, W.E.F.W., Heng, L.Y. & Arip, M.N.M. 2018. Surface modification of cellulose nanomaterial for urea biosensor application. Sains Malaysiana 47(5): 941-949.

Le Normand, M., Moriana, R. & Ek, M. 2014. Isolation and characterization of cellulose nanocrystals from spruce bark in a biofinery perspective. Carbohydrate Polymers 111: 979-987.

Mazlan, N.S.N., Zakaria, S., Gan, S., Hua, C.C. & Baharin, K.W. 2019. Comparison of regenerated cellulose membrane coagulated in sulphate-based coagulant. Cerne 25(1): 18-24.

Melo, D., Oliveira, S.N., de Freitas Barros, F.C., Raulino, G.S.C., Vidal, C.B. & Nascimento, R.F. 2016. Chemical modifications of lignocellulosic materials and their application for removal of cations and anions from aqueous solutions. Journal of Applied Polymer Science 133: 43286.

Mudhoo, A., Garg, V.K. & Wang, S. 2012. Removal of heavy metals by biosorption. Environmental Chemistry Letters 10(2): 109-117.

Pan, Z., Wang, K., Wang, Y., Tsiakaras, P. & Song, S. 2018. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: A novel strategy for graphite felt activation. Applied Catalysis B: Environmental 237: 392-400.

Qaiser, A.A. & Hyland, M.M. 2010. X-ray photoelectron spectroscopy characterization of polyaniline-cellulose ester composite membranes. In Materials Science Forum. Trans Tech Publications Ltd. 657: 35-45.

Rahayu, D.E., Wirjodirdjo, B. & Hadi, W. 2019. Availability of empty fruit bunch as biomass feedstock for sustainability of bioenergy product (system dynamic   approach). In AIP Conference Proceedings. AIP Publishing LLC. 2194(1): 020095.

Rantuch, P. & Chrebet, T. 2014. Thermal decomposition of cellulose insulation. Cellulose Chemical Technology 48(5-6): 461-467.

Razali, N.F., Chin Hua, C., Zakaria, S., Sajab, M.S., Tobe, T. & Tsuda, M. 2020. Penyahwarnaan efluen kilang minyak kelapa sawit (POME) melalui proses pengoksidaan fenton secara berterusan menggunakan limonit sebagai pemangkin. Sains Malaysiana 49(1): 69-74.

Saad, M.J., Chin Hua, C., Zakaria, S., Sajab, M.S. & Misran, S. 2020. Malaysia rice wastes for activated carbon production. In Proceeding - 9th Kuala Lumpur International Agriculture, Forestry and Plantation Conference (KLIAFP9). hlm. 20-26.

Sajab, M.S., Chia, C.H., Chan, C.H., Zakaria, S., Kaco, H., Chook, S.W. & Chin, S.X. 2016. Bifunctional graphene oxide - cellulose nanofibril aerogel loaded with Fe (III) for the removal of cationic dye via simultaneous adsorption and Fenton oxidation. RSC Advances 6(24): 19819-19825.

Sajab, M.S., Chia, C.H., Zakaria, S. & Sillanpää, M. 2017. Adsorption of heavy metal ions on surface of functionalized oil palm empty fruit bunch fibers: single and binary systems. Sains Malaysiana 46(1): 157-165.

Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H., Jaafar, S.N.S. & Amran, U.A. 2018. Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. International Journal of Biological Macromolecules 118: 1422-1430.

Samiran, N.A., Jaafar, M.N.M., Chong, C.T. & Jo-Han, N. 2015. A review of palm oil biomass as a feedstock for syngas fuel technology. Jurnal Teknologi (Sciences & Engineering) 72: 13-18.

Sakaguchi, M., Ohura, T., Iwata, T., Takahashi, S., Akai, S., Kan, T., Murai, H., Fujiwara, M., Watanabe, O. & Narita, M. 2010. Diblock copolymer of bacterial cellulose and poly (methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 11(11): 3059-3066.

Senna, A.M., Novack, K.M. & Botaro, V.R. 2014. Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydrate Polymers 114: 260-268.

Senna, A.M., do Carmo, J.B., da Silva, J.M.S. & Botaro, V.R. 2015. Synthesis, characterization and application of hydrogel derived from cellulose acetate as a substrate for slow-release NPK fertilizer and water retention in soil. Journal of Environmental Chemical Engineering 3(2): 996-1002.

Sheltami, R.M., Kargarzadeh, H. & Abdullah, I. 2015. Effects of silane surface treatment of cellulose nanocrystals on the tensile properties of cellulose-polyvinyl chloride nanocomposite. Sains   Malaysiana 44(6): 801-810.

Smith, B.C. 2018. The C= O bond, part III: Carboxylic acids. Spectroscopy 33(1): 14-20.

Stevulova, N., Cigasova, J., Estokova, A., Terpakova, E., Geffert, A., Kacik, F., Singovszka, E. & Holub, M. 2014. Properties characterization of chemically modified hemp hurds. Materials 7(12): 8131-8150.

Wang, X., Tang, C., Wang, Q., Lu, Y. & Liu, X. 2018. Thermal stability improvement of polysiloxane-grafted insulating paper cellulose in micro-water environment. AIP Advances 8(10): 105007.

Yagyu, H., Saito, T., Isogai, A., Koga, H. & Nogi, M. 2015. Chemical modification of cellulose nanofibers for the production of highly thermal resistant and optically transparent nanopaper for paper devices. ACS Applied Materials and Interfaces 7(39): 22012-22017.

Yan, E.Y.C., Zakaria, S., Chia, C.H. & Boku, T. 2017. Bifunctional regenerated cellulose membrane containing TiO2 nanoparticles for absorption and photocatalytic decomposition. Sains Malaysiana 46(4): 637-644.

Yao, Y. & Wang, H. 2018. An overview on chemical modification of cellulose. Materials   Reports 32(19): 3478-3488.

Zhou, L., Ke, K., Yang, M.B. & Yang, W. 2020. Recent progress on chemical modification of cellulose for high mechanical-performance poly (lactic acid)/cellulose composite: A short review. Composites Communications 2020: 100548.

 

*Corresponding author; email: kushairisalleh@ukm.edu.my

 

 

previous