Sains Malaysiana 50(12)(2021): 3745-3751
http://doi.org/10.17576/jsm-2021-5012-23
Toeplitz Determinant for a Subclass of Tilted Starlike Functions with Respect to Conjugate Points
(Penentu Toeplitz untuk Subkelas Fungsi Bak Bintang Miring terhadap Titik-titik Konjugat)
NUR HAZWANI AQILAH ABDUL WAHID1 & DAUD
MOHAMAD1*
1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450
Shah Alam, Selangor Darul Ehsan, Malaysia
Received: 29 January 2021/Accepted: 24 March 2021
ABSTRACT
Let
denote
the class of analytic and univalent functions in an open unit disk
of the
form
and
satisfy
where
and
This
paper presents the coefficient bounds for functions in
using
symmetric Toeplitz determinants
and
The
results obtained generalize the results for some existing subclasses in the
literature.
Keywords: Coefficient bounds; starlike functions with respect to conjugate points; Toeplitz determinant
ABSTRAK
Andaikan
sebagai kelas fungsi analisaan dan univalen dalam cakera unit terbuka
dalam bentuk
dan memenuhi syarat
dengan
dan
Makalah ini membentangkan batas-batas pekali bagi fungsi dalam
menggunakan penentu-penentu Toeplitz
dan
Keputusan
yang diperoleh mengitlak keputusan beberapa subkelas dalam kajian lepas.
Kata kunci: Batas-batas pekali; fungsi bak bintang terhadap titik-titik konjugat; penentu Toeplitz
REFERENCES
Al-Khafaji, S.N., Al-Fayadh, A.,
Hussain, A.H. & Abbas, S. A. 2020, November. Toeplitz determinant whose its entries are the coefficients for class of Non-Bazilevič functions. In Journal of Physics: Conference Series. IOP Publishing. 1660(1):
012091.
Ali, M.F., Thomas, D.K. & Vasudevarao,
A. 2018. Toeplitz determinants whose elements are the coefficients of analytic
and univalent functions. Bulletin of the
Australian Mathematical Society 97(2): 253-264.
Dahhar, S.A.F.M. & Janteng,
A. 2009. A subclass of starlike functions with
respect to conjugate points. International
Mathematical Forum 4(28): 1373-1377.
Duren, P.L. 1983. Univalent
Functions. New York–Berlin–Heidelberg–Tokyo: Springer.
Efraimidis, I. 2016. A generalization of
Livingston's coefficient inequalities for functions with positive real part. Journal of Mathematical Analysis and
Applications 435(1): 369-379.
El-Ashwah, R.M. & Thomas, D.K.
1987. Some subclasses of close-to-convex functions. Journal of the Ramanujan Mathematical Society 2(1): 85-100.
Halim, S.A. 1991. Functions starlike with respect to other points. International
Journal of Mathematics and Mathematical Sciences 14(3): 451-456.
Pommerenke, C. 1967. On the Hankel determinants
of univalent functions. Mathematika 14(1): 108-112.
Pommerenke, C. 1966. On the coefficients and
Hankel determinants of univalent functions. Journal
of the London Mathematical Society 1(1): 111-122.
Radhika, V., Jahangiri, J.M., Sivasubramanian, S. & Murugusundaramoorthy,
G. 2018. Toeplitz matrices whose elements are coefficients of Bazilevič functions. Open Mathematics 16(1): 1161-1169.
Radhika, V., Sivasubramanian, S., Murugusundaramoorthy, G. & Jahangiri,
J.M. 2016. Toeplitz matrices whose elements are the coefficients of functions
with bounded boundary rotation. Journal
of Complex Analysis 2016: 4960704.
Ramachandran, C. & Kavitha, D. 2017. Toeplitz determinant for some subclasses of analytic functions. Global Journal of Pure and Applied Mathematics 13(2): 785-793.
Sivasubramanian, S., Govindaraj, M. & Murugusundaramoorthy, G. 2016. Toeplitz matrices whose
elements are the coefficients of analytic functions belonging to certain conic
domains. International Journal of Pure
and Applied Mathematics 109(10): 39-49.
Srivastava, H.M., Ahmad, Q.Z., Khan, N., Khan, N. &
Khan, B. 2019. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 7(2): 181.
Thomas, D.K. & Halim, S.A. 2016. Toeplitz matrices whose
elements are the coefficients of starlike and
close-to-convex functions. Bulletin of
the Malaysian Mathematical Sciences Society 40(4): 1781-1790.
Ye, K. & Lim, L.H. 2016. Every matrix is a product of
Toeplitz matrices. Foundations of Computational
Mathematics 16(3): 577-598.
Wahid, N.H.A.A., Mohamad, D. & Cik Soh, S. 2015. On a subclass of tilted starlike functions with respect to conjugate points. Discovering
Mathematics 37(1): 1-6.
Zhang, H.Y., Srivastava, R. & Tang, H. 2019. Third-order
Hankel and Toeplitz determinants for starlike functions connected with the sine function. Mathematics 7(5): 404.
*Corresponding author; email:
daud@tmsk.uitm.edu.my
|