Sains Malaysiana 50(1)(2021): 109-121
http://dx.doi.org/10.17576/jsm-2021-5001-12
Optimization
of Effervescent Tablet-Assisted Dispersive Liquid-Liquid Microextraction with Central Composite Design for Preconcentration of
Stimulant Drug
(Pengoptimuman Tablet Berbuak Berbantukan Sebaran Pengekstrakan Mikro Cecair-Cecair dengan Reka Bentuk Komposit Berpusat untuk Kepekatan Awalan Dadah Stimulan)
NURLIYANA TAZULAZHAR, SAW HONG LOH, MARINAH MOHD
ARIFFIN & WAN MOHD AFIQ WAN MOHD KHALIK*
Faculty
of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
Received:
18 May 2020/Accepted: 6 July 2020
ABSTRACT
The
extraction efficiency of stimulant drug, namely caffeine, was investigated
using a 23 central composite design. The values of optimum
extraction condition were set at 468 µL of 1-dodecanol, 1 piece of effervescent
tablet, and 22 °C of extraction temperature. An enrichment factor was
calculated as 72 for 80 mL water sample. The run time was conducted in less
than 6 min using a non-polar C18 column and an isocratic mobile
phase (methanol: water of 40:60 (v/v)) at a controlled flow rate of 1 mL min-1.
A good linear response was achieved in the range of 0.01-0.50 µg mL-1 (R2 > 0.998). Detection and quantification limits were calculated
at 0.009 and 0.015 µg mL-1, respectively. The average recoveries at
two spiking concentration levels were within the range of 75-105% with RSD <
2% (n = 3). Real samples namely beverages which contained caffeine and river
water were tested using the proposed method, and the results ranged 0.021-0.56
µg mL-1. The eco-scale score and green analytical procedure index
confirmed the greenness profile of the proposed method through a calculated
score of 88 and has 6 green criteria, respectively.
Keywords:
Pharmaceutically active compound; response surface methodology; stimulant drug
ABSTRAK
Keberkesanan pengekstrakan bagi jenis dadah perangsang,
iaitu kafein telah dikaji menggunakan 23 reka bentuk komposit
berpusat. Pada keadaan optimum, nilai parameter ditetapkan pada 468 µL 1-dodecanol, 1 tablet berbuak dan 22 °C suhu
pengekstrakan. Faktor pengayaan dihitung pada nilai 72 bagi 80 mL sampel air.
Waktu eksekusi dijalankan kurang dari 6 minit menggunakan turus tak berkutub C18 dan fasa bergerak isokratik (metanol: air pada 40:60 (v/v)) pada kadar aliran
terkawal 1 mL min-1. Respons kelinearan yang baik telah dicapai dalam julat
0.01-0.50 µg mL-1 (R2> 0.998). Had pengesanan dan
pengkuantitian telah dihitung masing-masing pada 0.009 dan 0.015 µg mL-1. Purata perolehan semula pada
dua aras kepekatan sampel dipaku berada dalam julat 75-105% dengan nilai RSD
< 2% (n = 3). Analisis sampel sebenar iaitu minuman yang mengandungi kafein
dan air sungai telah diuji dengan kaedah yang dicadangkan dan keputusan yang
dihitung berada dalam julat 0.021-0.56 µg mL-1. Skor skala-eko dan
indeks prosedur analitis hijau telah mengesahkan profil hijau bagi kaedah yang
dicadangkan masing-masing dengan nilai skor yang dihitung ialah 88 dan 6
kriteria hijau.
Kata kunci: Dadah perangsang; kaedah gerak balas permukaan; sebatian aktif farmaseutis
REFERENCES
Al-Qaim, F.F., Jusof, S.H., Abdullah, M.P., Mussa, Z.H.,
Tahrim, N.A., Khalik, W.M.A.W.M. & Othman, M.R. 2017. Determination of
caffeine in surface water using solid phase extraction and high performance
liquid chromatography. Malaysian Journal of Analytical Sciences 21(1):
95-104.
Asadollahzadeh, M., Tavakoli, H., Torab-Mostaedi, M.,
Hosseini, G. & Hemmati, A. 2014. Response surface methodology based on
central composite design as a chemometric tool for optimization of
dispersive-solidification liquid-liquid microextraction for speciation of
inorganic arsenic in environmental water samples. Talanta 123:
25-31.
Buerge, I.J., Poiger, T., Müller, M.D. & Buser, H.R.
2003. Caffeine, an anthropogenic marker for wastewater contamination of surface
waters. Environmental Science & Technology 37(4): 691-700.
Chaiyamate, P., Seebunrueng, K. & Srijaranai, S. 2018.
Vortex-assisted low density solvent and surfactant based dispersive
liquid–liquid microextraction for sensitive spectrophotometric determination of
cobalt. RSC Advances 8(13): 7243-7251.
Cheng, J., Xiao, J., Zhou, Y., Xia, Y., Guo,
F. & Li, J. 2011. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for the
determination of diethofencarb and pyrimethanil in aqueous samples. Microchimica Acta 172(1-2): 51-55.
El-Deen, A.K. & Shimizu, K. 2019. Deep eutectic solvent
as a novel disperser in dispersive liquid-liquid microextraction based on
solidification of floating organic droplet (DLLME-SFOD) for preconcentration of
steroids in water samples: Assessment of the method deleterious impact on the
environment using analytical eco-scale and green analytical procedure index. Microchemical
Journal 149: 103988.
Farajzadeh, M.A., Bahram, M. & Vardast, M.R. 2010. Central
composite design applied to optimization of dispersive liquid-liquid
microextraction of Cu (II) and Zn (II) in water followed by high performance
liquid chromatography determination. Clean–Soil, Air, Water 38(5‐6): 466-477.
Gałuszka, A., Migaszewski, Z.M., Konieczka, P. & Namieśnik,
J. 2012. Analytical eco-scale for assessing the greenness of analytical
procedures. TrAC Trends in Analytical
Chemistry 37: 61-72.
Gomes, P.C.L., Barnes, B.B., Santos-Neto, Á.J., Lancas, F.M.
& Snow, N.H. 2013. Determination of steroids, caffeine and methylparaben in
water using solid phase microextraction-comprehensive two dimensional gas
chromatography-time of flight mass spectrometry. Journal of Chromatography A 1299: 126-130.
Gonçalves, E.S., Rodrigues, S.V. & Silva-Filho, E.V.D.
2017. The use of caffeine as a chemical marker of domestic wastewater
contamination in surface waters: seasonal and spatial variations in
Teresópolis, Brazil. Revista Ambiente & Água 12(2): 192-202.
Hrouzková, S., Brišová, M. & Szarka, A.
2017. Development of fast, efficient and ecological method employing
vortex-assisted dispersive liquid-liquid microextraction combined with fast gas
chromatography-mass spectrometry for pesticide residues analysis in
alcohol-content samples. Journal of Chromatography A 1506: 18-26.
Hu, S., Yang, X., Xue, J., Chen, X., Bai, X.H. & Yu, Z.H.
2017. Graphene/dodecanol floating solidification microextraction for the
preconcentration of trace levels of cinnamic acid derivatives in traditional
Chinese medicines. Journal of Separation Science 40(14): 2959-2966.
Jiang, W., Chen, X., Liu, F., You, X. &
Xue, J. 2014. Effervescence‐assisted dispersive liquid-liquid
microextraction using a solid effervescent agent as a novel dispersion
technique for the analysis of fungicides in apple juice. Journal of
Separation Science 37(21): 3157-3163.
Jing, X., Zhang, J., Zhu, J., Chen, Z., Yi, L. & Wang, X.
2018. Effervescent-assisted dispersive liquid-liquid microextraction based on
the solidification of floating organic droplets for the determination of
fungicides in vinegar and juice. Food Additives & Contaminants: Part A 35(11): 2128-2134.
Khalik, W.M.A.W.M. & Abdullah, M.P. 2017. Solid phase
extraction method for caffeine analysis in water: A mini review. Journal of Advanced
Chemical Sciences 3(2): 485-489.
Khalik, W.M.A.W.M., Loh, S.H., Albani, H., Alias, S.A.S.
& Rahman, K.U. 2020. Caffeine residue in Terengganu River basins in
Malaysia: Distribution and risk assessment. Nature Environment and Pollution
Technology 19(2): 711-719.
Khalik, W.M.A.W.M., Abdullah, M.P., Baharudin, F.K. &
Zulkepli, S.A. 2016. Optimization of extraction procedure for determination of
caffeine residue in water. Journal of Materials and Environmental Sciences 7(3):
720-728.
Khodadoust, S. & Ghaedi, M. 2013. Optimization of
dispersive liquid-liquid microextraction with central composite design for
preconcentration of chlordiazepoxide drug and its determination by
HPLC‐UV. Journal of Separation Science 36(11): 1734-1742.
Kotowska,
U. & Bieńczyk, K. 2013. Use of
direct immersion solid-phase microextraction on polyacrylate and
polydimethylsiloxane stationary phases for simultaneous determination of the
neutral and basic pharmaceuticals in wastewater. Open Chemistry 11(10):
1634-1643.
Lasarte-Aragonés, G., Lucena, R., Cárdenas,
S. & Valcárcel, M. 2014. Effervescence assisted dispersive liquid-liquid
microextraction with extractant removal by magnetic nanoparticles. Analytica
Chimica Acta 807: 61-66.
Liu, X., Zhigang, S., Peng, W., Chang, L.,
Zhiqiang, Z. & Donghui, L. 2014. Effervescence assisted on-site liquid
phase microextraction for the determination of five triazine herbicides in
water. Journal of Chromatography A 1371: 58-64.
Mahetaji, K., Mann, G., Marchetti, S., Raufdeen, F. &
Singh, N. 2016. An interdisciplinary investigation into alcohol, caffeine, and prozac. Master Thesis, McMaster University. (Unpublised).
Mazlan, A.F., Loh, S.H. & Khalik, W.M.A.W. M. 2019.
Optimization of C18-cellulose triacetate thin film for analysis of
caffeine residue in water. Asian Journal of Chemistry 31(9): 2101-2106.
Mohamed, H.M. & Lamie, N.T. 2016.
Analytical eco-scale for assessing the greenness of a developed RP-HPLCmethod
used for simultaneous analysis of combined antihypertensive medications. Journal
of AOAC International 99(5): 1260-1265.
Neng, N.R. & Nogueira, J.M.F. 2012. Development of a bar
adsorptive micro-extraction-large-volume injection-gas chromatography-mass
spectrometric method for pharmaceuticals and personal care products in
environmental water matrices. Analytical and Bioanalytical Chemistry 402(3): 1355-1364.
Płotka-Wasylka, J. 2018. A new tool for
the evaluation of the analytical procedure: Green Analytical Procedure
Index. Talanta 181: 204-209.
Przyjazny, A. 2017. Extraction: Liquid-phase microextraction, In Encyclopedia of Analytical Science (Third Edition), edited by Worsfold, P., Poole, C., Townshend, A. & Miró, M. New York: Academic Press. pp. 52-62.
Rezaee, M., Assadi, Y., Hosseini, M.R.M., Aghaee, E., Ahmadi,
F. & Berijani, S. 2006. Determination of organic compounds in water using
dispersive liquid-liquid microextraction. Journal of Chromatography A 1116(1-2): 1-9.
Shiri, F., Hashemi, B. & Sobhani, S. 2017. Central
composite design optimization of dispersive liquid-liquid microextraction based
on solidification of organic drop for the determination of
5-hydroxymethyl-2-furfural in orange juice using high-performance liquid
chromatography. Journal of Analytical Chemistry 72(6): 671-677.
Shishov, A., Volodina, N., Nechaeva, D.,
Gagarinova, S. & Bulatov, A. 2019. An automated homogeneous liquid-liquid
microextraction based on deep eutectic solvent for the HPLC-UV determination of
caffeine in beverages. Microchemical Journal 144: 469-473.
Sun, A., Xu, Q. & Yu, X. 2013. Determination of bisphenol
a and 4-nonylphenol in water using ionic liquid dispersive liquid phase
microextraction. Polish Journal of Environmental Studies 22(3): 899-907.
Tobiszewski, M., Tsakovski, S., Simeonov, V.
& Namieśnik, J. 2014. Multivariate statistical comparison of
analytical procedures for benzene and phenol determination with respect to
their environmental impact. Talanta 130: 449-455.
Wang, X., Wu, L., Cao, J., Hong, X., Ye, R., Chen, W. &
Yuan, T. 2016. Magnetic effervescent tablet-assisted ionic liquid dispersive
liquid-liquid microextraction of selenium for speciation in foods and
beverages. Food Additives & Contaminants: Part A 33(7): 1190-1199.
Xia, J., Xiang, B. & Zhang, W. 2008. Determination of
metacrate in water samples using dispersive liquid-liquid microextraction and
HPLC with the aid of response surface methodology and experimental design. Analytica
Chimica Acta 625(1): 28-34.
Xu, X., Su, R., Zhao, X., Liu, Z., Zhang, Y., Li, D., Li, X.,
Zhang, H. & Wang, Z. 2011. Ionic liquid-based microwave-assisted dispersive
liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk and animal plasma. Analytica Chimica Acta 707(1-2): 92-99.
Yan, H., Liu, B., Du, J., Yang, G. & Row, K.H. 2010.
Ultrasound-assisted dispersive liquid-liquid microextraction for the
determination of six pyrethroids in river water. Journal of Chromatography A 1217(32): 5152-5157.
Yang, M., Wu, X., Jia, Y., Xi, X., Yang, X., Lu, R. &
Zhou, W. 2016. Use of magnetic effervescent tablet-assisted ionic liquid
dispersive liquid-liquid microextraction to extract fungicides from
environmental waters with the aid of experimental design methodology. Analytica
Chimica Acta 906: 118-127.
Yao, C., Li, T., Twu, P., Pitner, W.R. & Anderson, J.L.
2011. Selective extraction of emerging contaminants from water samples by
dispersive liquid-liquid microextraction using functionalized ionic liquids. Journal
of Chromatography A 1218(12): 1556-1566.
Yazdi, A.S., Razavi, N. & Yazdinejad, S.R. 2008.
Separation and determination of amitriptyline and nortriptyline by dispersive
liquid-liquid microextraction combined with gas chromatography flame ionization
detection. Talanta 75(5): 1293-1299.
Zgoła-Grześkowiak, A. & Grześkowiak, T.
2011. Dispersive liquid-liquid microextraction. TrAC Trends in Analytical
Chemistry 30(9): 1382-1399.
Zeng, H., Qiao, K., Li, X., Yang,
M., Zhang, S., Lu, R., Li, J., Gao, H. & Zhou, W. 2017. Dispersive
liquid-liquid microextraction based on the
solidification of deep eutectic solvent for the determination of benzoylureas
in environmental water samples. Journal of Separation Science 40(23): 4563-4570.
Zhou, P., Zheng, R., Zhang, W., Liu, W., Li, Y., Wang, H.
& Wang, X. 2019. Development of an effervescent tablet microextraction
method using NiFe2O4-based magnetic nanoparticles for
preconcentration/extraction of heavy metals prior to ICP-MS analysis of
seafood. Journal of Analytical Atomic Spectrometry 34(3): 598-606.
Zulkipli, N.A., Loh, S.H. & Khalik, W.M.A.W.M. 2019. C18-CTA
composite thin film usage as an extraction sorbent for caffeine residue in
water analysis. Research Journal of Chemistry and Environment 23(1):
44-50.
*Corresponding
author; email: wan.afiq@umt.edu.my
|