Sains Malaysiana 50(1)(2021): 109-121

http://dx.doi.org/10.17576/jsm-2021-5001-12

 

Optimization of Effervescent Tablet-Assisted Dispersive Liquid-Liquid Microextraction with Central Composite Design for Preconcentration of Stimulant Drug

(Pengoptimuman Tablet Berbuak Berbantukan Sebaran Pengekstrakan Mikro Cecair-Cecair dengan Reka Bentuk Komposit Berpusat untuk Kepekatan Awalan Dadah Stimulan)

 

NURLIYANA TAZULAZHAR, SAW HONG LOH, MARINAH MOHD ARIFFIN & WAN MOHD AFIQ WAN MOHD KHALIK*

 

Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

Received: 18 May 2020/Accepted: 6 July 2020

 

ABSTRACT

The extraction efficiency of stimulant drug, namely caffeine, was investigated using a 23 central composite design. The values of optimum extraction condition were set at 468 µL of 1-dodecanol, 1 piece of effervescent tablet, and 22 °C of extraction temperature. An enrichment factor was calculated as 72 for 80 mL water sample. The run time was conducted in less than 6 min using a non-polar C18 column and an isocratic mobile phase (methanol: water of 40:60 (v/v)) at a controlled flow rate of 1 mL min-1. A good linear response was achieved in the range of 0.01-0.50 µg mL-1 (R2 > 0.998). Detection and quantification limits were calculated at 0.009 and 0.015 µg mL-1, respectively. The average recoveries at two spiking concentration levels were within the range of 75-105% with RSD < 2% (n = 3). Real samples namely beverages which contained caffeine and river water were tested using the proposed method, and the results ranged 0.021-0.56 µg mL-1. The eco-scale score and green analytical procedure index confirmed the greenness profile of the proposed method through a calculated score of 88 and has 6 green criteria, respectively. 

 

Keywords: Pharmaceutically active compound; response surface methodology; stimulant drug

 

ABSTRAK

Keberkesanan pengekstrakan bagi jenis dadah perangsang, iaitu kafein telah dikaji menggunakan 23 reka bentuk komposit berpusat. Pada keadaan optimum, nilai parameter ditetapkan pada 468 µL  1-dodecanol, 1 tablet berbuak dan 22 °C suhu pengekstrakan. Faktor pengayaan dihitung pada nilai 72 bagi 80 mL sampel air. Waktu eksekusi dijalankan kurang dari 6 minit menggunakan turus tak berkutub C18 dan fasa bergerak isokratik (metanol: air pada 40:60 (v/v)) pada kadar aliran terkawal 1 mL min-1. Respons kelinearan yang baik telah dicapai dalam julat 0.01-0.50 µg mL-1 (R2> 0.998). Had pengesanan dan pengkuantitian telah dihitung masing-masing pada 0.009 dan 0.015 µg mL-1. Purata perolehan semula pada dua aras kepekatan sampel dipaku berada dalam julat 75-105% dengan nilai RSD < 2% (n = 3). Analisis sampel sebenar iaitu minuman yang mengandungi kafein dan air sungai telah diuji dengan kaedah yang dicadangkan dan keputusan yang dihitung berada dalam julat 0.021-0.56 µg mL-1. Skor skala-eko dan indeks prosedur analitis hijau telah mengesahkan profil hijau bagi kaedah yang dicadangkan masing-masing dengan nilai skor yang dihitung ialah 88 dan 6 kriteria hijau.

 

Kata kunci: Dadah perangsang; kaedah gerak balas permukaan; sebatian aktif farmaseutis

 

REFERENCES

Al-Qaim, F.F., Jusof, S.H., Abdullah, M.P., Mussa, Z.H., Tahrim, N.A., Khalik, W.M.A.W.M. & Othman, M.R. 2017. Determination of caffeine in surface water using solid phase extraction and high performance liquid chromatography. Malaysian Journal of Analytical Sciences 21(1): 95-104.

Asadollahzadeh, M., Tavakoli, H., Torab-Mostaedi, M., Hosseini, G. & Hemmati, A. 2014. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples. Talanta 123: 25-31.

Buerge, I.J., Poiger, T., Müller, M.D. & Buser, H.R. 2003. Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science & Technology 37(4): 691-700.

Chaiyamate, P., Seebunrueng, K. & Srijaranai, S. 2018. Vortex-assisted low density solvent and surfactant based dispersive liquid–liquid microextraction for sensitive spectrophotometric determination of cobalt. RSC Advances 8(13): 7243-7251.

Cheng, J., Xiao, J., Zhou, Y., Xia, Y., Guo, F. & Li, J. 2011. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for the determination of diethofencarb and pyrimethanil in aqueous samples. Microchimica Acta 172(1-2): 51-55.

El-Deen, A.K. & Shimizu, K. 2019. Deep eutectic solvent as a novel disperser in dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFOD) for preconcentration of steroids in water samples: Assessment of the method deleterious impact on the environment using analytical eco-scale and green analytical procedure index. Microchemical Journal 149: 103988.

Farajzadeh, M.A., Bahram, M. & Vardast, M.R. 2010. Central composite design applied to optimization of dispersive liquid-liquid microextraction of Cu (II) and Zn (II) in water followed by high performance liquid chromatography determination. Clean–Soil, Air, Water 38(5‐6): 466-477.

Gałuszka, A., Migaszewski, Z.M., Konieczka, P. & Namieśnik, J. 2012. Analytical eco-scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry 37: 61-72.

Gomes, P.C.L., Barnes, B.B., Santos-Neto, Á.J., Lancas, F.M. & Snow, N.H. 2013. Determination of steroids, caffeine and methylparaben in water using solid phase microextraction-comprehensive two dimensional gas chromatography-time of flight mass spectrometry. Journal of Chromatography A 1299: 126-130.

Gonçalves, E.S., Rodrigues, S.V. & Silva-Filho, E.V.D. 2017. The use of caffeine as a chemical marker of domestic wastewater contamination in surface waters: seasonal and spatial variations in Teresópolis, Brazil. Revista Ambiente & Água 12(2): 192-202.

Hrouzková, S., Brišová, M. & Szarka, A. 2017. Development of fast, efficient and ecological method employing vortex-assisted dispersive liquid-liquid microextraction combined with fast gas chromatography-mass spectrometry for pesticide residues analysis in alcohol-content samples. Journal of Chromatography A 1506: 18-26.

Hu, S., Yang, X., Xue, J., Chen, X., Bai, X.H. & Yu, Z.H. 2017. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines. Journal of Separation Science 40(14): 2959-2966.

Jiang, W., Chen, X., Liu, F., You, X. & Xue, J. 2014. Effervescence‐assisted dispersive liquid-liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice. Journal of Separation Science 37(21): 3157-3163.

Jing, X., Zhang, J., Zhu, J., Chen, Z., Yi, L. & Wang, X. 2018. Effervescent-assisted dispersive liquid-liquid microextraction based on the solidification of floating organic droplets for the determination of fungicides in vinegar and juice. Food Additives & Contaminants: Part A 35(11): 2128-2134.

Khalik, W.M.A.W.M. & Abdullah, M.P. 2017. Solid phase extraction method for caffeine analysis in water: A mini review. Journal of Advanced Chemical Sciences 3(2): 485-489.

Khalik, W.M.A.W.M., Loh, S.H., Albani, H., Alias, S.A.S. & Rahman, K.U. 2020. Caffeine residue in Terengganu River basins in Malaysia: Distribution and risk assessment. Nature Environment and Pollution Technology 19(2): 711-719.

Khalik, W.M.A.W.M., Abdullah, M.P., Baharudin, F.K. & Zulkepli, S.A. 2016. Optimization of extraction procedure for determination of caffeine residue in water. Journal of Materials and Environmental Sciences 7(3): 720-728.

Khodadoust, S. & Ghaedi, M. 2013. Optimization of dispersive liquid-liquid microextraction with central composite design for preconcentration of chlordiazepoxide drug and its determination by HPLC‐UV. Journal of Separation Science 36(11): 1734-1742.

Kotowska, U. & Bieńczyk, K. 2013. Use of direct immersion solid-phase microextraction on polyacrylate and polydimethylsiloxane stationary phases for simultaneous determination of the neutral and basic pharmaceuticals in wastewater. Open Chemistry 11(10): 1634-1643.

Lasarte-Aragonés, G., Lucena, R., Cárdenas, S. & Valcárcel, M. 2014. Effervescence assisted dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles. Analytica Chimica Acta 807: 61-66.

Liu, X., Zhigang, S., Peng, W., Chang, L., Zhiqiang, Z. & Donghui, L. 2014. Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water. Journal of Chromatography A 1371: 58-64.

Mahetaji, K., Mann, G., Marchetti, S., Raufdeen, F. & Singh, N. 2016. An interdisciplinary investigation   into   alcohol,   caffeine,   and   prozac. Master Thesis, McMaster University. (Unpublised).

Mazlan, A.F., Loh, S.H. & Khalik, W.M.A.W. M. 2019. Optimization of C18-cellulose triacetate thin film for analysis of caffeine residue in water. Asian Journal of Chemistry 31(9): 2101-2106.

Mohamed, H.M. & Lamie, N.T. 2016. Analytical eco-scale for assessing the greenness of a developed RP-HPLCmethod used for simultaneous analysis of combined antihypertensive medications. Journal of AOAC International 99(5): 1260-1265.

Neng, N.R. & Nogueira, J.M.F. 2012. Development of a bar adsorptive micro-extraction-large-volume injection-gas chromatography-mass spectrometric method for pharmaceuticals and personal care products in environmental water matrices. Analytical and Bioanalytical Chemistry 402(3): 1355-1364.

Płotka-Wasylka, J. 2018. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 181: 204-209.

Przyjazny, A. 2017. Extraction: Liquid-phase microextraction, In Encyclopedia of Analytical Science (Third Edition), edited by Worsfold, P., Poole, C., Townshend, A. & Miró, M. New York: Academic Press. pp. 52-62.

Rezaee, M., Assadi, Y., Hosseini, M.R.M., Aghaee, E., Ahmadi, F. & Berijani, S. 2006. Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A 1116(1-2): 1-9.

Shiri, F., Hashemi, B. & Sobhani, S. 2017. Central composite design optimization of dispersive liquid-liquid microextraction based on solidification of organic drop for the determination of 5-hydroxymethyl-2-furfural in orange juice using high-performance liquid chromatography. Journal of Analytical Chemistry 72(6): 671-677.

Shishov, A., Volodina, N., Nechaeva, D., Gagarinova, S. & Bulatov, A. 2019. An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages. Microchemical Journal 144: 469-473.

Sun, A., Xu, Q. & Yu, X. 2013. Determination of bisphenol a and 4-nonylphenol in water using ionic liquid dispersive liquid phase microextraction. Polish Journal of Environmental Studies 22(3): 899-907.

Tobiszewski, M., Tsakovski, S., Simeonov, V. & Namieśnik, J. 2014. Multivariate statistical comparison of analytical procedures for benzene and phenol determination with respect to their environmental impact. Talanta 130: 449-455.

Wang, X., Wu, L., Cao, J., Hong, X., Ye, R., Chen, W. & Yuan, T. 2016. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages. Food Additives & Contaminants: Part A 33(7): 1190-1199.

Xia, J., Xiang, B. & Zhang, W. 2008. Determination of metacrate in water samples using dispersive liquid-liquid microextraction and HPLC with the aid of response surface methodology and experimental design. Analytica Chimica Acta 625(1): 28-34.

Xu, X., Su, R., Zhao, X., Liu, Z., Zhang, Y., Li, D., Li, X., Zhang, H. & Wang, Z. 2011. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk and animal plasma. Analytica Chimica Acta 707(1-2): 92-99.

Yan, H., Liu, B., Du, J., Yang, G. & Row, K.H. 2010. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of six pyrethroids in river water. Journal of Chromatography A 1217(32): 5152-5157.

Yang, M., Wu, X., Jia, Y., Xi, X., Yang, X., Lu, R. & Zhou, W. 2016. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology. Analytica Chimica Acta 906: 118-127.

Yao, C., Li, T., Twu, P., Pitner, W.R. & Anderson, J.L. 2011. Selective extraction of emerging contaminants from water samples by dispersive liquid-liquid microextraction using functionalized ionic liquids. Journal of Chromatography A 1218(12): 1556-1566.

Yazdi, A.S., Razavi, N. & Yazdinejad, S.R. 2008. Separation and determination of amitriptyline and nortriptyline by dispersive liquid-liquid microextraction combined with gas chromatography flame ionization detection. Talanta 75(5): 1293-1299.

Zgoła-Grześkowiak, A. & Grześkowiak, T. 2011. Dispersive liquid-liquid microextraction. TrAC Trends in Analytical Chemistry 30(9): 1382-1399.

Zeng, H., Qiao, K., Li, X., Yang, M., Zhang, S., Lu, R., Li, J., Gao, H. & Zhou, W. 2017. Dispersive liquid-liquid microextraction based on the solidification of deep eutectic solvent for the determination of benzoylureas in environmental water samples. Journal of Separation Science 40(23): 4563-4570.

Zhou, P., Zheng, R., Zhang, W., Liu, W., Li, Y., Wang, H. & Wang, X. 2019. Development of an effervescent tablet microextraction method using NiFe2O4-based magnetic nanoparticles for preconcentration/extraction of heavy metals prior to ICP-MS analysis of seafood. Journal of Analytical Atomic Spectrometry 34(3): 598-606.

Zulkipli, N.A., Loh, S.H. & Khalik, W.M.A.W.M. 2019. C18-CTA composite thin film usage as an extraction sorbent for caffeine residue in water analysis. Research Journal of Chemistry and Environment 23(1): 44-50.

 

*Corresponding author; email: wan.afiq@umt.edu.my

 

 

 

previous