Sains Malaysiana 50(1)(2021): 123-133
http://dx.doi.org/10.17576/jsm-2021-5001-13
Micro-Solid Phase Extraction
of Polycyclic Aromatic Hydrocarbons in Water using either C18 or Molecularly Imprinted Polymer Membranes: Analytical Merits and Limitations
(Pengekstrakan Fasa Pepejal-Mikro bagi
Hidrokarbon Aromatik Polisiklik dalam Air Menggunakan Sama Ada Membran C18 atau Polimer Molekul Teraan: Kebaikan dan Kelemahan Analisis)
SITI NURUL UMIRA MOHD SABARI1,
SAW HONG LOH1*, SAZLINDA KAMARUZAMAN2, NOORFATIMAH YAHAYA3 & WAN MOHD AFIQ WAN MOHD KHALIK1
1Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Darul Iman,
Malaysia
2Department
of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
3Integrative
Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains
Malaysia, 13200 Bertam Kepala Batas, Pulau Pinang, Malaysia
Received: 22 March
2020/Accepted: 1 July 2020
ABSTRACT
Sample pre-treatment is often the bottleneck
in an analytical process. Due to the drawbacks of conventional sample
pre-treatment methods, microextraction utilizing lower amounts of adsorbents
and organic solvents are therefore favoured. A micro-solid phase extraction (μ-SPE) technique coupled with gas
chromatography-flame ionization detection (GC-FID) was successfully developed
for the analysis of selected polycyclic aromatic hydrocarbons (PAHs), namely
phenanthrene, fluoranthene, and pyrene, in environmental water. In this study, μ-SPE techniques using C18 and molecularly imprinted
polymer (MIP) membranes were optimized, validated, and applied to the analysis
of selected PAHs in environmental water samples. The analytical merits were
compared, and the two methods were evaluated in terms of linearity, repeatability,
and relative recovery. Under the optimal extraction conditions, both μ-SPE techniques using either C18 or MIP membranes as the adsorbents offered comparable
ultratrace analysis of the selected PAHs in the range of 0.003 to 0.01 µg L–1.
The
extraction strength of C18 membranes was superior to that of MIP membranes for the extraction of low molecular weights PAHs from water in
the presence of humic acid as a matrix factor. The C18 membranes overcome the non-covalence interaction between PAHs and humic acid
and thus achieve better recovery.
Keywords:
C18; humic acid; micro-solid phase extraction; MIP; polycyclic
aromatic hydrocarbons
ABSTRAK
Pra-rawatan sampel selalu menjadi halangan
dalam satu proses analisis. Disebabkan kelemahan yang timbul dalam kaedah
pra-rawatan sampel yang konvensional, mikro pengekstrakan yang menggunakan
amaun penjerap dan pelarut organik yang lebih rendah adalah lebih disukai. Satu
teknik pengekstrakan fasa mikro pepejal (μ-SPE) bergabungan kromatografi gas-pengesanan pengionan nyala
(GC-FID) telah berjaya dibangunkan untuk analisis hidrokarbon aromatik
polisiklik (PAHs) terpilih, iaitu fenantrena, fluorantena dan pirena, dalam air
alam sekitar. Dalam kajian ini, teknik μ-SPE
menggunakan C18 dan polimer molekul teraan telah dioptimum,
divalidasi dan diaplikasi dalam analisis PAHs terpilih dalam sampel air alam
sekitar. Kebaikan analitikal dibandingkan dan kedua-dua teknik dinilai daripada
segi kelinearan, kebolehulangan dan perolehan semula secara relatif. Di bawah
keadaan pengekstrakan yang optimum, kedua-dua teknik μ-SPE yang menggunakan sama ada membran C18 atau MIP sebagai
penjerap menawarkan analisis ultra-surih PAHs terpilih yang setanding dalam
lingkungan 0.003 hingga 0.01 µg L–1. Kekuatan mengekstrak membran C18adalah terunggul jika dibandingkan
dengan membran MIP khususnya dalam mengektrak PAHs berjisim molekul rendah
daripada air dengan kehadiran asik humik sebagai satu faktor matriks. Membran C18 mengatasi interaksi bukan kovalen yang wujud antara PAHs dan asik humik dan
seterusnya mencapai perolehan semula yang lebih baik.
Kata
kunci: Asid humik; C18; hidrokarbon aromatik polisiklik; MIP;
pengekstrakan fasa mikro pepejal
REFERENCES
Alexiadou,
D.K., Maragou, N.C., Thomaidis, N.S., Theodoridis, G.A. & Koupparis, M.A.
2008. Molecularly imprinted polymers for bisphenol A for HPLC and SPE from
water and milk. Journal of Separation
Science 31(12): 2272-2282.
Brambilla, G., Fiori, M.,
Rizzo, B., Crescenzi, V. & Masci, G. 2001. Use of molecularly imprinted
polymers in the solid-phase extraction of clenbuterol from animal feeds and
biological matrices. Journal of
Chromatography B 759(1): 27-32.
Chapuis, F., Mullot, J.U.,
Pichon, V., Tuffal, G. & Hennion, M.C. 2006. Molecularly imprinted polymers
for the clean-up of a basic drug from environmental and biological samples. Journal of Chromatography A 1135(2): 127-134.
Conte, P., Zena, A., Pilidis, G. &
Piccolo, A. 2001. Increased retention of polycyclic
aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environmental Pollution 112(1):
27-31.
Deng,
D.L., Zhang, J.Y., Chen, C., Hou, X.L., Su, Y.Y. & Wu, L. 2012. Monolithic
molecular imprinted polymer fiber for recognition and solid phase
microextraction of ephedrine and pseudoephedrine in biological samples prior to
capillary electrophoresis analysis. Journal of
Chromatography A 1219:
195-200.
Domingues Nazario, C.E., de Lima Gomes,
P.C.F. & Lancas, F.M.
2014. Analysis of fluoxetine and norfluoxetine in human plasma by HPLC-UV using
a high purity C18 silica-based SPE sorbent. Analytical
Methods 6(12): 4181-4187.
Gauthier, T.D., Shane, E.C., Guerin, W.F.,
Seitz, W.R. & Grant, C.L. 1986. Fluorescence quenching method for
determining equilibrium constants for polycyclic aromatic hydrocarbons binding
to dissolved humic materials. Environmental
Science & Technology 20(11): 1162-1166.
Ge, D. & Lee, H.K. 2011. Water stability of zeolite imidazolate framework 8 and
application to porous membrane-protected micro-solid-phase extraction of
polycyclic aromatic hydrocarbons from environmental water samples. Journal of
Chromatography A 1218(47): 8490-8495.
Laor, Y. & Rebhun, M. 2002. Evidence
for nonlinear binding of PAHs to dissolved humic acids. Environmental Science & Technology 36(5): 955-961.
Lhotská, I., Gajdošová, B.,
Solich, P. & Šatínský, D. 2018. Molecularly imprinted vs. reversed-phase
extraction for the determination of zearalenone: A method development and
critical comparison of sample clean-up efficiency achieved in an on-line
coupled SPE chromatography system. Analytical
and Bioanalytical Chemistry 410(14): 3265-3273.
Liu, H.H. & Dasgupta, P.K. 1996. Analytical chemistry in a drop. Solvent extraction in a microdrop. Analytical Chemistry 68(11): 1817-1821.
Jeannot, M.A. & Cantwell, F.F. 1996.
Solvent microextraction into a single drop. Analytical Chemistry 68(13): 2236-2240.
Madikizela, L.M., Tavengwa, N.T. & Chimuka, L. 2018.
Applications of molecularly imprinted polymers for solid-phase extraction of
non-steroidal anti-inflammatory drugs and analgesics from environmental waters
and biological samples. Journal of
Pharmaceutical and Biomedical Analysis 147: 624-633.
Maier, N.M., Buttinger, G., Welhartizki,
S., Gavioli, E. & Lindner, W. 2004. Molecularly imprinted polymer-assisted
sample clean-up of ochratoxin A from red wine: Merits and limitations. Journal of Chromatography B 804(1):
103-111.
Maragou, N.C., Lampi, E.N., Thomaidis,
N.S. & Koupparis, M.A. 2006. Determination of bisphenol A in milk by solid
phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A 1129(2):
165-173.
Martin, P.D., Jones, G.R., Stringer, F. &
Wilson, I.D. 2004. Comparison of extraction of a β-blocker from plasma
onto a molecularly imprinted polymer with liquid-liquid extraction and solid
phase extraction methods. Journal of Pharmaceutical and Biomedical Analysis 35(5): 1231-1239.
Meseguer Lloret, S., Molins Legua, C.
& Campins Falco, P. 2002. Preconcentration and dansylation of aliphatic
amines using C18 solid-phase packings: Application to the screening analysis in environmental water samples. Journal of Chromatography A 978(1-2):
59-69.
Naing, N.N., Li, S.F.Y. & Lee, H.K.
2016. Micro-solid phase extraction followed by thermal
extraction coupled with gas chromatography-mass selective detector for the
determination of polybrominated diphenyl ethers in water. Journal of Chromatography 1458: 25-34.
Naveena, B., Armshaw, P. & Tony
Pembroke, J. 2015. Ultrasonic intensification as a tool for enhanced microbial biofuel yields. Biotechnology for Biofuels 8(1): 1-13.
See, H.H., Sanagi, M.M., Wan Ibrahim, W.A.
& Naim, A.A. 2010. Determination of triazine herbicides using
membrane-protected carbon nanotubes solid phase membrane tip extraction prior
to micro-liquid chromatography. Journal
of Chromatography A 1217(11): 1767-1772.
Shen, H.Y., Zhu, Y., Wen, X.E. &
Zhuang, Y.M. 2007. Preparation of Fe3O4-C18 nano-magnetic
composite materials and their cleanup properties for organophosphorous
pesticides. Analytical and Bioanalytical
Chemistry 387(6): 2227-2237.
Shen, J.X., Tama, C.I. & Hayes, R.N.
2006. Evaluation of automated micro solid phase extraction tips (µ-SPE) for the
validation of a LC-MS/MS bioanalytical method. Journal of Chromatography B 843(2): 275-282.
Thurman, E.M. 1986. Aquatic Humic Substances. InOrganic Geochemistry of Natural Waters. edited by Hijhof, W. & Junk, W. USA: Kluwer Academic.
Turner, A. 2003. Salting out of chemicals
in estuaries: Implications for contaminant partitioning and modelling. Science of The Total Environment 314-316: 599-612.
Zhang,
Z., Tan, W., Hu, Y. & Li, G. 2011. Simultaneous determination of trace
sterols in complicated biological samples by gas chromatography-mass
spectrometry coupled with extraction using β-sitosterol magnetic
molecularly imprinted polymer beads. Journal
of Chromatography A 1218(28):
4275-4283.
Zhao, M., Zhang, C., Zhang,
Y., Guo, X., Yan, H. & Zhang, H. 2014. Efficient synthesis of narrowly dispersed hydrophilic and magnetic
molecularly imprinted polymer microspheres with excellent molecular recognition
ability in the real biological sample. Chemical
Communications 50(17): 2208-2210.
*Corresponding
author; email: lohsh@umt.edu.my
|