Sains Malaysiana 50(1)(2021): 123-133

http://dx.doi.org/10.17576/jsm-2021-5001-13

 

Micro-Solid Phase Extraction of Polycyclic Aromatic Hydrocarbons in Water using either C18 or Molecularly Imprinted Polymer Membranes: Analytical Merits and Limitations

 (Pengekstrakan Fasa Pepejal-Mikro bagi Hidrokarbon Aromatik Polisiklik dalam Air Menggunakan Sama Ada Membran C18 atau Polimer Molekul Teraan: Kebaikan dan Kelemahan Analisis)

 

SITI NURUL UMIRA MOHD SABARI1, SAW HONG LOH1*, SAZLINDA KAMARUZAMAN2, NOORFATIMAH YAHAYA3 & WAN MOHD AFIQ WAN MOHD KHALIK1

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam Kepala Batas, Pulau Pinang, Malaysia

 

Received: 22 March 2020/Accepted: 1 July 2020

 

ABSTRACT

Sample pre-treatment is often the bottleneck in an analytical process. Due to the drawbacks of conventional sample pre-treatment methods, microextraction utilizing lower amounts of adsorbents and organic solvents are therefore favoured. A micro-solid phase extraction (μ-SPE) technique coupled with gas chromatography-flame ionization detection (GC-FID) was successfully developed for the analysis of selected polycyclic aromatic hydrocarbons (PAHs), namely phenanthrene, fluoranthene, and pyrene, in environmental water. In this study, μ-SPE techniques using C18 and molecularly imprinted polymer (MIP) membranes were optimized, validated, and applied to the analysis of selected PAHs in environmental water samples. The analytical merits were compared, and the two methods were evaluated in terms of linearity, repeatability, and relative recovery. Under the optimal extraction conditions, both μ-SPE techniques using either C18 or MIP membranes as the adsorbents offered comparable ultratrace analysis of the selected PAHs in the range of 0.003 to 0.01 µg L–1. The extraction strength of C18 membranes was superior to that of MIP membranes for the extraction of low molecular weights PAHs from water in the presence of humic acid as a matrix factor. The C18 membranes overcome the non-covalence interaction between PAHs and humic acid and thus achieve better recovery.

 

Keywords: C18; humic acid; micro-solid phase extraction; MIP; polycyclic aromatic hydrocarbons

 

ABSTRAK

Pra-rawatan sampel selalu menjadi halangan dalam satu proses analisis. Disebabkan kelemahan yang timbul dalam kaedah pra-rawatan sampel yang konvensional, mikro pengekstrakan yang menggunakan amaun penjerap dan pelarut organik yang lebih rendah adalah lebih disukai. Satu teknik pengekstrakan fasa mikro pepejal (μ-SPE) bergabungan kromatografi gas-pengesanan pengionan nyala (GC-FID) telah berjaya dibangunkan untuk analisis hidrokarbon aromatik polisiklik (PAHs) terpilih, iaitu fenantrena, fluorantena dan pirena, dalam air alam sekitar. Dalam kajian ini, teknik μ-SPE menggunakan C18 dan polimer molekul teraan telah dioptimum, divalidasi dan diaplikasi dalam analisis PAHs terpilih dalam sampel air alam sekitar. Kebaikan analitikal dibandingkan dan kedua-dua teknik dinilai daripada segi kelinearan, kebolehulangan dan perolehan semula secara relatif. Di bawah keadaan pengekstrakan yang optimum, kedua-dua teknik μ-SPE yang menggunakan sama ada membran C18 atau MIP sebagai penjerap menawarkan analisis ultra-surih PAHs terpilih yang setanding dalam lingkungan 0.003 hingga 0.01 µg L–1. Kekuatan mengekstrak membran C18adalah terunggul jika dibandingkan dengan membran MIP khususnya dalam mengektrak PAHs berjisim molekul rendah daripada air dengan kehadiran asik humik sebagai satu faktor matriks. Membran C18 mengatasi interaksi bukan kovalen yang wujud antara PAHs dan asik humik dan seterusnya mencapai perolehan semula yang lebih baik.

 

Kata kunci: Asid humik; C18; hidrokarbon aromatik polisiklik; MIP; pengekstrakan fasa mikro pepejal

 

REFERENCES

Alexiadou, D.K., Maragou, N.C., Thomaidis, N.S., Theodoridis, G.A. & Koupparis, M.A. 2008. Molecularly imprinted polymers for bisphenol A for HPLC and SPE from water and milk. Journal of Separation Science 31(12): 2272-2282.

Brambilla, G., Fiori, M., Rizzo, B., Crescenzi, V. & Masci, G. 2001. Use of molecularly imprinted polymers in the solid-phase extraction of clenbuterol from animal feeds and biological matrices. Journal of Chromatography B 759(1): 27-32.

Chapuis, F., Mullot, J.U., Pichon, V., Tuffal, G. & Hennion, M.C. 2006. Molecularly imprinted polymers for the clean-up of a basic drug from environmental and biological samples. Journal of Chromatography A 1135(2): 127-134.

Conte, P., Zena, A., Pilidis, G. & Piccolo, A. 2001. Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environmental Pollution 112(1): 27-31.

Deng, D.L., Zhang, J.Y., Chen, C., Hou, X.L., Su, Y.Y. & Wu, L. 2012. Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. Journal of Chromatography A 1219: 195-200.

Domingues Nazario, C.E., de Lima Gomes, P.C.F. & Lancas, F.M. 2014. Analysis of fluoxetine and norfluoxetine in human plasma by HPLC-UV using a high purity C18 silica-based SPE sorbent. Analytical Methods 6(12): 4181-4187.

Gauthier, T.D., Shane, E.C., Guerin, W.F., Seitz, W.R. & Grant, C.L. 1986. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environmental Science & Technology 20(11): 1162-1166.

Ge, D. & Lee, H.K. 2011. Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Journal of Chromatography A 1218(47): 8490-8495.

Laor, Y. & Rebhun, M. 2002. Evidence for nonlinear binding of PAHs to dissolved humic acids. Environmental Science & Technology 36(5): 955-961.

Lhotská, I., Gajdošová, B., Solich, P. & Šatínský, D. 2018. Molecularly imprinted vs. reversed-phase extraction for the determination of zearalenone: A method development and critical comparison of sample clean-up efficiency achieved in an on-line coupled SPE chromatography system. Analytical and Bioanalytical Chemistry 410(14): 3265-3273.

Liu, H.H. & Dasgupta, P.K. 1996. Analytical chemistry in a drop. Solvent extraction in a microdrop. Analytical Chemistry 68(11): 1817-1821.

Jeannot, M.A. & Cantwell, F.F. 1996. Solvent microextraction into a single drop. Analytical Chemistry 68(13): 2236-2240.

Madikizela, L.M., Tavengwa, N.T. & Chimuka, L. 2018. Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. Journal of Pharmaceutical and Biomedical Analysis 147: 624-633.

Maier, N.M., Buttinger, G., Welhartizki, S., Gavioli, E. & Lindner, W. 2004. Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: Merits and limitations. Journal of Chromatography B 804(1): 103-111.

Maragou, N.C., Lampi, E.N., Thomaidis, N.S. & Koupparis, M.A. 2006. Determination of bisphenol A in milk by solid phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A 1129(2): 165-173.

Martin, P.D., Jones, G.R., Stringer, F. & Wilson, I.D. 2004. Comparison of extraction of a β-blocker from plasma onto a molecularly imprinted polymer with liquid-liquid extraction and solid phase extraction methods. Journal of Pharmaceutical and Biomedical Analysis 35(5): 1231-1239.

Meseguer Lloret, S., Molins Legua, C. & Campins Falco, P. 2002. Preconcentration and dansylation of aliphatic amines using C18 solid-phase packings: Application to the screening analysis in environmental water samples. Journal of Chromatography A 978(1-2): 59-69.

Naing, N.N., Li, S.F.Y. & Lee, H.K. 2016. Micro-solid phase extraction followed by thermal extraction coupled with gas chromatography-mass selective detector for the determination of polybrominated diphenyl ethers in water. Journal of Chromatography 1458: 25-34.

Naveena, B., Armshaw, P. & Tony Pembroke, J. 2015. Ultrasonic intensification as a tool for enhanced microbial biofuel yields. Biotechnology for Biofuels 8(1): 1-13.

See, H.H., Sanagi, M.M., Wan Ibrahim, W.A. & Naim, A.A. 2010. Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. Journal of Chromatography A 1217(11): 1767-1772.

Shen, H.Y., Zhu, Y., Wen, X.E. & Zhuang, Y.M. 2007. Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Analytical and Bioanalytical Chemistry 387(6): 2227-2237.

Shen, J.X., Tama, C.I. & Hayes, R.N. 2006. Evaluation of automated micro solid phase extraction tips (µ-SPE) for the validation of a LC-MS/MS bioanalytical method. Journal of Chromatography B 843(2): 275-282.

Thurman, E.M. 1986. Aquatic Humic Substances. InOrganic Geochemistry of Natural Waters. edited by Hijhof, W. & Junk, W. USA: Kluwer Academic.

Turner, A. 2003. Salting out of chemicals in estuaries: Implications for contaminant partitioning and modelling. Science of The Total Environment 314-316: 599-612.

Zhang, Z., Tan, W., Hu, Y. & Li, G. 2011. Simultaneous determination of trace sterols in complicated biological samples by gas chromatography-mass spectrometry coupled with extraction using β-sitosterol magnetic molecularly imprinted polymer beads. Journal of Chromatography A 1218(28): 4275-4283.

Zhao, M., Zhang, C., Zhang, Y., Guo, X., Yan, H. & Zhang, H. 2014. Efficient synthesis of narrowly dispersed hydrophilic and magnetic molecularly imprinted polymer microspheres with excellent molecular recognition ability in the real biological sample. Chemical Communications 50(17): 2208-2210.

 

*Corresponding author; email: lohsh@umt.edu.my

 

 

 

previous