Sains Malaysiana 50(1)(2021): 201-206

http://dx.doi.org/10.17576/jsm-2021-5001-20

 

Startle Habituation: A Tool for Assessing Information Processing Deficits in Zebrafish Model of Schizophrenia

(Kejutan Habituasi: Suatu Alat untuk Menilai Maklumat Defisit Pemprosesan pada Model Ikan Zebra Skizofrenia)

 

WEN-YANG PNG1, PEK-YEE TANG1, SATOSHI OGAWA2, ISHWAR PARHAR2, SIEW-YING MOK1*

 

1Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

2Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

 

Received: 10 April 2020/Accepted: 19 June 2020

 

ABSTRACT

Prepulse inhibition (PPI) and habituation of acoustic startle reflex have been extensively used to assess deficits in the sensorimotor functions of human patients and animal models of schizophrenia. These assays require expensive and sophisticated experimental setup for fine control of acoustic stimuli and sound attenuation. In this study, we investigate whether startle habituation assay based on mechanical (tap) stimuli can induce similar impairment in the habituation response in the schizophrenia model of larval zebrafish. For this purpose, a custom startle apparatus consisting of a 9 V push and pull solenoid and an Arduino Uno microcontroller was used to generate tap stimuli at desired intervals. Our results showed that tap stimuli at 1 Hz effectively evoked startle response in the control fishes which habituated after a few trials. The habituation response was significantly impaired in the MK801-induced schizophrenia model, similar to that elicited by acoustic startle stimuli in a previous study. We propose this simple and inexpensive method as an alternative tool for studying information processing and attention deficits in the pharmacological model of schizophrenia in zebrafish. 

 

Keywords: Habituation; schizophrenia; startle; tap stimuli; zebrafish

 

ABSTRAK

Inhibisi prepulse dan habituasi refleks kejutan akustik telah digunakan secara meluas untuk menilai defisit dalam fungsi sensorimotor pesakit dan model haiwan skizofrenia. Ujian sebelum ini memerlukan peralatan uji kaji yang mahal dan canggih untuk kawalan halus rangsangan akustik dan pelemahan bunyi. Dalam kajian ini, kami mengkaji sama ada ujian habituasi berdasarkan rangsangan mekanikal (ketukan) boleh menyebabkan kemerosotan yang sama dalam tindak balas seperti yang ditunjukkan dalam model habituasi skizofrenia ikan zebra. Untuk tujuan ini, kami membina radas yang terdiri daripada solenoid tolak-dan-tarik dan mikropengawal Arduino Uno untuk menjana rangsangan mekanikal mengikut selangan yang dikehendaki. Hasil kajian kami menunjukkan bahawa rangsangan ketukan pada 1 Hz berkesan menimbulkan tindak balas kejutan kepada ikan kelompok kawalan dan menunjukkan habituasi selepas beberapa set rangsangan mekanikal. Tindak balas habituasi dalam model skizofrenia yang diinduksikan oleh MK801 terjejas dengan ketara, sama seperti yang ditunjukkan dalam kajian rangsangan akustik sebelum ini. Kami mencadangkan kaedah yang mudah dan berpatutan ini sebagai alternatif untuk mengkaji pemprosesan maklumat dan defisit perhatian dalam model farmakologi skizofrenia ikan zebra.

 

Kata kunci: Habituasi; ikan zebra; kejutan; rangsangan mekanikal; skizofrenia

 

REFERENCES

Abel, K., Waikar, M., Pedro, B., Hemsley, D. & Geyer, M. 1998. Repeated testing of prepulse inhibition and habituation of the startle reflex: A study in healthy human controls. Journal of Psychopharmacology 12(4): 330-337.

Basnet, R.M., Zizioli, D., Taweedet, S., Finazzi, D. & Memo, M. 2019. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7(1): 23.

Best, J.D., Berghmans, S., Hunt, J.J.F.G., Clarke, S.C., Fleming, A., Goldsmith, P. & Roach, A.G. 2008. Non-associative learning in larval zebrafish. Neuropsychopharmacology 33(5): 1206-1215.

Bhandiwad, A.A., Raible, D.W., Rubel, E.W. & Sisneros, J.A. 2018. Noise-induced hypersensitization of the acoustic startle response in larval zebrafish. Journal of the Association for Research in Otolaryngology 19(6): 741-752.

Bhandiwad, A.A., Zeddies, D.G., Raible, D.W., Rubel, E.W. & Sisneros, J.A. 2013. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. Journal of Experimental Biology 216(18): 3504-3513.

Bolino, F., Di Michele, V., Di Cicco, L., Manna, V., Daneluzzo, E. & Casacchia, M. 1994. Sensorimotor gating and habituation evoked by electro-cutaneous stimulation in schizophrenia. Biological Psychiatry 36(10): 670-679.

Bolino, F., Manna, V., Di Cicco, L., Di Michele, V., Daneluzzo, E., Rossi, A. & Casacchia, M. 1992. Startle reflex habituation in functional psychoses: A controlled study. Neuroscience Letters 145(2): 126-128.

Burgess, H.A. & Granato, M. 2007. Sensorimotor gating in larval zebrafish. Journal of Neuroscience 27(18): 4984-4994.

Chanin, S., Fryar, C., Varga, D., Raymond, J., Kyzar, E., Enriquez, J., Bagawandoss, S., Gaikwad, S., Roth, A., Pham, M., Zapolsky, I., Bruce, I., Hester, J., Green, J., Desmond, D., Stewart, A.M. & Kalueff, A.V. 2012. Assessing startle responses and their habituation in adult zebrafish. In Zebrafish Protocols for Neurobehavioral Research, edited by Kalueff, A.V. & Stewart, A.M. Humana Press: Springer Science+Business Media. pp. 287-300.

Chen, J., Patel, R., Friedman, T.C. & Jones, K.S. 2010. The behavioral and pharmacological actions of NMDA receptor antagonism are conserved in zebrafish larvae. International Journal of Comparative Psychology 23(1): 82-90.

Eddins, D., Cerutti, D., Williams, P., Linney, E. & Levin, E.D. 2010. Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: Comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicology and Teratology 32(1): 99-108.

Fleming, A., Diekmann, H. & Goldsmith, P. 2013. Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish. PLoS ONE 8(10): e77548.

Gawel, K., Banono, N.S., Michalak, A. & Esguerra, C.V. 2019. A critical review of zebrafish schizophrenia models: Time for validation? Neuroscience and Biobehavioral Reviews 107: 6-22.

Geyer, M.A. & Braff, D.L. 1982. Habituation of the blink reflex in normals and schizophrenic patients. Psychophysiology 19(1): 1-6.

Geyer, M.A., Swerdlow, N.R., Mansbach, R.S. & Braff, D.L. 1990. Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Research Bulletin 25(3): 485-498.

Glazer, L., Wells, C.N., Drastal, M., Odamah, K.A., Galat, R.E., Behl, M. & Levin, E.D. 2018. Developmental exposure to low concentrations of two brominated flame retardants, BDE-47 and BDE-99, causes life-long behavioral alterations in zebrafish. NeuroToxicology 66: 221-232.

MacPhail, R.C., Brooks, J., Hunter, D.L., Padnos, B., Irons, T.D. & Padilla, S. 2009.  Locomotion in larval zebrafish: Influence of time of day, lighting and ethanol.  NeuroToxicology 30(1): 52-58.

Marcotte, E.R., Pearson, D.M. & Srivastava, L.K. 2001. Animal models of schizophrenia: A critical review. Journal of Psychiatry and Neuroscience 26(5): 395-410.

Norton, W.H.J. 2013. Towards developmental models of psychiatric disorders in zebrafish. Frontiers in Neural Circuits  7: 79.

O'Brown, N.M., Megason, S.G. & Gu, C. 2019. Suppression of transcytosis regulates zebrafish blood-brain barrier function. ELife  8: e47326.

Parwani, A., Duncan, E.J., Bartlett, E., Madonick, S.H., Efferen, T.R., Rajan, R., Sanfilipo, M., Chappell, P.B., Chakravorty, S., Gonzenbach, S., Ko, G.N. & Rotrosen, J.P. 2000. Impaired prepulse inhibition of acoustic startle in schizophrenia. Biological Psychiatry 47(7): 662-669.

Picard, H., Amado, I., Mouchet-Mages, S., Olié, J.P. & Krebs, M.O. 2008. The role of the cerebellum in schizophrenia: An update of clinical, cognitive, and functional evidences. Schizophrenia Bulletin 34(1): 155-172.

Rice, C., Ghorai, J.K., Zalewski, K. & Weber, D.N. 2011. Developmental lead exposure causes startle response deficits in zebrafish. Aquatic Toxicology 105(3-4): 600-608.

Rodriguez, A., Zhang, H., Klaminder, J., Brodin, T., Andersson, P.L. & Andersson, M. 2018. ToxTrac: A fast and robust software for tracking organisms. Methods in Ecology and Evolution 9(3): 460-464.

Swerdlow, N.R., Caine, S.B., Braff, D.L. & Geyer, M.A. 1992. The neural substrates of sensorimotor gating of the startle reflex: A review of recent findings and their implications. Journal of Psychopharmacology 6(2): 176-190.

Thompson, R.F. & Spencer, W.A. 1966. Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review 73(1): 16-43.

Wang, X., Ding, S., Lu, Y., Jiao, Z., Zhang, L., Zhang, Y., Yang, Y., Zhang, Y., Li, W. & Lv, L. 2019. Effects of sodium nitroprusside in the acute dizocilpine (MK-801) animal model of schizophrenia. Brain Research Bulletin 147: 140-147.

Wood, J.D., Bonath, F., Kumar, S., Ross, C.A. & Cunliffe, V.T. 2009. Disrupted-in-schizophrenia 1 and neuregulin 1 are required for the specification of oligodendrocytes and neurones in the zebrafish brain. Human Molecular Genetics 18(3): 391-404.

 

*Corresponding author; email: moksy@utar.edu.my

 

 

 

previous