Sains Malaysiana 50(1)(2021): 227-238

http://dx.doi.org/10.17576/jsm-2021-5001-22

 

Investigation on Structural Behaviour of Bamboo Reinforced Concrete Slabs under Concentrated Load

(Kajian ke atas Sifat Struktur Slab Konkrit diperkuat Buluh di bawah Beban Tertumpu)

 

Yanuar Haryanto1,3, Nanang Gunawan Wariyatno2,3, Hsuan-Teh Hu1,4*, Ay Lie Han2 & Banu Ardi Hidayat1, 2

 

1Department of Civil Engineering, College of Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan

 

2Department of Civil Engineering, Faculty of Engineering, Diponegoro University, Jln. Prof. Soedarto, Tembalang, Semarang, 50275, Indonesia

 

3Department of Civil Engineering, Faculty of Engineering, Jenderal Soedirman University, Jln. Mayjen. Sungkono KM 5, Blater, Purbalingga, 53371, Indonesia

 

4Department of Civil and Disaster Prevention Engineering, College of Engineering and Science, National United University, No. 2, Lien Da, Nan Shih Li, Miaoli, 36063, Taiwan

 

 

Received: 7 March 2020/Accepted: 1 July 2020

 

Abstract

Reinforced concrete is perhaps the most widely used building material in the world.  However, the materials used for reinforcement of concrete i.e. steel is quite expensive and scarcely available in the developing world. As a result, bamboo is considered to be a cheaper replacement with high tensile strength. This research investigated the structural behavior of bamboo-reinforced concrete slabs used for footplate foundation subjected to concentrated load. For this purpose, four different reinforced concrete slab panels were developed and analyzed. The influence of replacing steel with bamboo for the reinforcement of concrete slabs on their structural behavior was assessed by determining the load-deflection characteristics, the ultimate load, the stiffness, the ductility, the cracking pattern, and the energy absorption capacity. The results showed that in comparison to steel reinforced concrete slabs, the strength of 82% can be acquired by the bamboo reinforced slabs. Furthermore, ductility demonstrated by the two types of specimens was almost equivalent i.e. up to 93%. Those indicated that the structural behavior demonstrated by bamboo reinforced slabs is quite comparable to that of steel reinforced concrete slabs. Therefore, bamboo can prove to be a promising substitute for steel in concrete reinforcement. Future studies may further examine this opportunity.

 

Keywords: Bamboo reinforced concrete; concentrated load; slab; structural behaviour

 

Abstrak

Konkrit diperkuat ialah bahan pembinaan yang digunakan secara meluas di seluruh dunia. Namun, bahan yang digunakan untuk memperkuatkan konkrit seperti keluli agak mahal dan sukar didapati di negara sedang membangun. Oleh itu, buluh telah dianggap sebagai bahan pengganti yang lebih murah dengan kekuatan regangan yang tinggi. Penyelidikan ini mengkaji sifat struktur konkrit diperkuat oleh buluh yang digunakan untuk tapak plat kaki dalam beban tertumpu. Bagi tujuan ini, empat panel slab konkrit yang diperkuat telah dibangunkan untuk dikaji sifat strukturnya. Kesan penggantian keluli menggunakan buluh sebagai bahan diperkuat kepada konkrit ke atas sifat struktur telah dikaji untuk menentukan ciri beban-pesongan, beban muktamad, kekakuan, kemuluran, corak retakan dan muatan penyerapan tenaga. Keputusan menunjukkan bahawa berbanding dengan konkrit diperkuat keluli, 82% kekuatan telah tercapai dengan penggunaan buluh. Tambahan pula, kemuluran yang ditunjukkan oleh dua jenis spesimen hampir setara iaitu hingga 93%. Ini menunjukkan bahawa sifat struktur yang ditunjukkan oleh slab diperkuat buluh agak setanding dengan slab konkrit diperkuat keluli. Oleh itu, buluh berpotensi menjadi pengganti keluli dalam peneguhan konkrit. Kajian pada masa depan boleh mengkaji lebih lanjut peluang ini.

 

Kata kunci: Beban tertumpu; konkrit diperkuat buluh; sifat struktur; slab

 

References

Agarwal, A., Nanda, B. & Maity, D. 2014. Experimental investigation on chemically treated bamboo reinforced concrete beams and columns. Computers & Chemical Enginering 71: 610-617.

Anandamurthy, A., Guna, V., Ilangovan, M. & Reddy, N. 2017. A review of fibrous reinforcements of concrete. Journal of Reinforced Plastics and Composites 36(7): 519-552.

Angulo-Ibáñez, Q. 2017. Performance analysis of wooden reinforcement in rammed earth walls. Periodica Polytechnica Civil Engineering 61(4): 882-888.

Archila, H., Harries, K.A., Kaminski, S., Trujillo, D. & Escamilla, E.Z. 2018. Bamboo reinforced concrete: A critical review. Materials and Structures 51(102): 1-18.

Audu, M.T. & Raheem, A.A. 2017. Flexural behavior of fanpalm reinforced concrete slabs. Journal of Building Engineering 13: 63-67.

BSN SNI 1974:2011. 2011. Concrete Compressive Strength Test Methods with Cylindrical Specimens. Indonesia: Badan Standardisasi Nasional (BSN).

BSN SNI 15-2049-2004. 2004. Portland Cement. Indonesia: Badan Standardisasi Nasional (BSN).

BSN SNI 03-1968-1990. 1990. Testing Method on Sieve Analysis of Fine and Coarse Aggregate. Indonesia: Badan Standardisasi Nasional (BSN).

Bhonde, D., Nagarnaik, P.B., Parbat, D.K. & Waghe, U.P. 2014. Experimental investigation of bamboo reinforced concrete slab. American Journal of Engineering Research 3(1): 128-131.

Chithambaram, S.J. & Kumar, S. 2017. Flexural behaviour of bamboo based ferrocement slab panels with flyash. Construction and Building Materials 134: 641-648.

Dewi, S.M & Nuralinah, D. 2017. The recent research on bamboo reinforced concrete. In MATEC Web of Conferences 103: 02001.

Dey, A. & Chetia, N. 2018. Experimental study of bamboo reinforced concrete beams having various frictional properties. Materials Today: Proceeding 5(1): 436-444.

Fergusson-Calwell, T.C. 2015. Viability of bamboo reinforced concrete for residential housing in Indonesia. Bachelor Thesis: Charles Darwin University (Unpublished).

Ghavami, K. 2005. Bamboo as reinforcement in structural concrete elements. Cement and Concrete Composites 27(6): 637-349.

Ghavami, K. 1995. Ultimate load behaviour of bamboo-reinforced lightweight concrete beams. Cement and Concrete Composites 17(4): 281-288.

Haryanto, Y., Hu, H.T., Han, A.L., Wariyatno N.G., Sudibyo, G.H., Hidayat, B.A. & Naqiyah, K. 2019a. Precast segmental bamboo reinforced concrete beams with bolted connections subjected to flexural loads: An experimental investigation. In IOP Conference Series: Material Science and Engineering. p. 615.

Haryanto, Y., Hu, H.T., Han, A.Y., Atmajayanti, A.T., Galuh, D.L.C. & Hidayat, B.A. 2019b. Finite element analysis of T-section RC beams strengthened by wire rope in the negative moment region with an addition of steel rebar at the compression block. Jurnal Teknologi 81(4): 143-154.

Haryanto, Y., Gan, B.S., Widyaningrum, A., Wariyatno, N.G. & Fadli, A. 2018. On the performance of steel wire rope as the external strengthening of RC beams with different end-anchor type. Jurnal Teknologi 80(5): 145-154.

Haryanto, Y., Gan, B.S. & Maryoto, A. 2017. Wire rope flexural bonded strengthening system on RC-beams: A finite element simulation. International Journal of Technology 8(1): 134-144.

Haryanto, Y., Gan, B.S., Widyaningrum, A. & Maryoto, A. 2017. Near surface mounted bamboo reinforcement for flexural strengthening of reinforced concrete beams. Jurnal Teknologi79(6): 233-240.

Haryanto, Y., Satyarno, I. & Sulistyo, D. 2012. Strength and ductility of reinforced concrete T-beams strengthened in the negative moment region with wire rope and mortar composite. Civil Engineering Forum 21(1): 1163-1169.

Hidayat, B.A., Hu, H.T., Han, A.L., Haryanto, Y., Widianingrum, A. & Pamudji, G. 2019. Nonlinear finite element analysis of traditional flexural strengthening using betung bamboo (Dendrocalamus asper) on concrete beams. In IOP Conference Series: Material Science and Engineering. p. 615.

Ismail, R., Bon, Y.C., Adiba, N., Joolkeepri & Ishak, I.S. 2018. Strength behavior of bamboo-reinforced concrete slabs. In IOP Conference Series: Materials Science and Engineering. p. 431.

Kankam, C.K. & Odum-Ewuakye, B. 2006. Babadua reinforced concrete two-way slabs subjected to concentrated loading. Construction and Building Materials 20(5): 279-285.

Kankam, C.K. & Odum-Ewuakye, B. 2001. Flexural behaviour of babadua reinforced one-way slabs subjected to third-point loading. Construction and Building Materials 15(1): 27-33.

Karthik, S., Rao, P.R.M. & Awoyera, P.O. 2017. Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. Journal of King Saud University - Engineering Sciences 29(4): 400-406.

Mali, P.R. & Datta, D. 2018. Experimental evaluation of bamboo reinforced concrete slab panels. Construction and Building Materials 188: 1092-1100.

Maruthupandian, G., Saravanan, R., Kumar, S.S. & Sivakumar, B.G. 2016. A study on bamboo reinforced concrete slabs. Journal of Chemical and Pharmaceutical Science 9(2): 978-980.

Moroz, J.G., Lissel, S.L. & Hagel, M.D. 2014. Performance of bamboo reinforced concrete masonry shear walls. Construction and Building Materials 61: 125-137.

Nahar, T.T. & Rahman, M.M. 2015. Strengthening of RCC beams using bamboo sticks. International Journal of Advanced Science and Technology 79: 15-24.

Puri, V., Chakrabortty, P., Anand, S. & Majumdar, S. 2017. Bamboo reinforced prefabricated wall panels for low cost housing. Journal of Building Engineering 9: 52-59.

Rahman, M.M., Rashid, M.H., Hossain, M.A., Hasan, M.T. & Hasan, M.K. 2011. Performance evaluation of bamboo reinforced concrete beam. International Journal of Engineering & Technology 11(4): 142-146.

Reid, S.G. 1985. The flexural rigidity of reinforced concrete slabs. Computers & Structures 20(6): 929-938.

Sen, T. & Reddy, H.N.J. 2011. A numerical study of strengthening of RCC beam using natural bamboo fibre. International Journal of Computer Theory and Engineering 3(5): 707-713.

Sharma, B., Gatóo, A. & Ramage, M.H. 2015a.  Effect of processing methods on the mechanical properties of engineered bamboo. Construction and Building Materials 83: 95-101.

Sharma, B., Gatóo, A., Bock, M., Mulligan, & Ramage, M.H. 2015b. Engineered bamboo: State of the art. Proceeding of the Institution of Civil Engineers - Construction Materials 168(2): 57-67.

Terai, M. & Minami, K. 2011. Fracture behavior and mechanical properties of bamboo reinforced concrete members. Procedia Engineering 10: 2967-2972.

Wariyatno, N.G., Haryanto, Y. & Sudibyo, G.H. 2017. Flexural behaviour of precast hollow core slab using PVC pipe and styrofoam with different reinforcement. Procedia Engineering 171: 909-916.

Wibowo, A., Wijatmiko, I. & Nainggolan, C.R. 2017. Structural behavior of lightweight bamboo reinforced concrete slab with EPS infill panel. In AIP Conference Proceedings. p. 1887.

Xiao, Y., Yang, R.Z. & Shan, B. 2013. Production, environmental impact and mechanical properties of glubam. Construction and Build Materials 44: 765-773.

Xu, Q., Chen, X., Chen, J.F., Harries, K.A., Chen, L. & Wang, Z. 2019. Seismic strengthening of masonry walls using bamboo components. Advances in Structural Engineering 22(14): 1-16.

Zhu, M., Long, Y., Jiang, Q. & Li, J. 2015. Experimental study on bending bearing capacity of bamboo-reinforced concrete plate. In Proceeding of 2015 International Forum on Energy, Environment Science and Materials. pp. 526-531.

Zuhri, M.Y.M., Liao, Y., Wang, Q.Y. & Guan, Z.W. 2017. The energy absorbing properties of bamboo-based structures. Journal of Sandwich Structures and Materials 21(3): 1032-1054.

 

*Corresponding author; email: hthu@ncku.edu.tw

 

 

 

previous