Sains Malaysiana 50(1)(2021): 227-238
http://dx.doi.org/10.17576/jsm-2021-5001-22
Investigation on Structural Behaviour of
Bamboo Reinforced Concrete Slabs under Concentrated Load
(Kajian ke atas Sifat Struktur Slab Konkrit diperkuat Buluh di bawah Beban Tertumpu)
Yanuar Haryanto1,3, Nanang Gunawan Wariyatno2,3, Hsuan-Teh Hu1,4*, Ay Lie Han2 & Banu Ardi Hidayat1, 2
1Department of Civil Engineering, College
of Engineering, National Cheng Kung University, 1 University Road, Tainan, 701,
Taiwan
2Department of Civil Engineering, Faculty
of Engineering, Diponegoro University, Jln. Prof. Soedarto, Tembalang, Semarang, 50275, Indonesia
3Department of Civil Engineering, Faculty
of Engineering, Jenderal Soedirman University, Jln. Mayjen. Sungkono KM 5, Blater, Purbalingga, 53371, Indonesia
4Department of Civil and Disaster Prevention Engineering, College
of Engineering and Science, National United University, No. 2, Lien Da, Nan
Shih Li, Miaoli, 36063, Taiwan
Received: 7 March 2020/Accepted: 1 July
2020
Abstract
Reinforced concrete is perhaps the most widely used building material in the world. However, the materials used for reinforcement
of concrete i.e. steel is quite expensive
and scarcely available in the developing world. As a result, bamboo is considered to be a cheaper replacement with high
tensile strength. This research
investigated the structural behavior of bamboo-reinforced concrete slabs used
for footplate foundation subjected to concentrated load. For this
purpose, four different reinforced concrete slab panels were developed and
analyzed. The influence of replacing
steel with bamboo for the reinforcement of concrete slabs on their structural behavior was assessed by determining
the load-deflection characteristics, the ultimate load, the stiffness, the ductility, the cracking pattern, and the energy
absorption capacity. The results showed that in comparison to steel reinforced concrete slabs, the
strength of 82% can be acquired by the bamboo reinforced slabs. Furthermore,
ductility demonstrated by the two types of specimens was almost equivalent i.e.
up to 93%. Those indicated that the structural behavior demonstrated by bamboo
reinforced slabs is quite comparable to that of steel reinforced concrete
slabs. Therefore, bamboo can prove to be a promising substitute for steel in
concrete reinforcement. Future studies may further examine this opportunity.
Keywords:
Bamboo reinforced concrete; concentrated load; slab; structural behaviour
Abstrak
Konkrit diperkuat ialah bahan pembinaan yang digunakan secara meluas di seluruh dunia. Namun, bahan yang digunakan untuk memperkuatkan konkrit seperti keluli agak mahal dan sukar didapati di negara sedang membangun. Oleh itu, buluh telah dianggap sebagai bahan pengganti yang lebih murah dengan kekuatan regangan yang tinggi. Penyelidikan ini mengkaji sifat struktur konkrit diperkuat oleh buluh yang digunakan untuk tapak plat kaki dalam beban tertumpu. Bagi tujuan ini, empat panel slab konkrit yang diperkuat telah dibangunkan untuk dikaji sifat strukturnya. Kesan penggantian keluli menggunakan buluh sebagai bahan diperkuat kepada konkrit ke atas sifat struktur telah dikaji untuk menentukan ciri beban-pesongan, beban muktamad, kekakuan, kemuluran, corak retakan dan muatan penyerapan tenaga. Keputusan menunjukkan bahawa berbanding dengan konkrit diperkuat keluli, 82% kekuatan telah tercapai dengan penggunaan buluh. Tambahan pula, kemuluran yang ditunjukkan oleh dua jenis
spesimen hampir setara iaitu hingga 93%. Ini menunjukkan bahawa sifat struktur yang ditunjukkan oleh slab diperkuat
buluh agak setanding dengan slab konkrit diperkuat keluli. Oleh itu, buluh berpotensi menjadi pengganti keluli dalam peneguhan
konkrit. Kajian pada masa depan boleh mengkaji lebih lanjut peluang ini.
Kata kunci: Beban tertumpu; konkrit diperkuat buluh; sifat struktur;
slab
References
Agarwal, A., Nanda, B. & Maity,
D. 2014. Experimental investigation on chemically treated bamboo reinforced
concrete beams and columns. Computers
& Chemical Enginering 71: 610-617.
Anandamurthy,
A., Guna, V., Ilangovan, M.
& Reddy, N. 2017. A review of fibrous reinforcements of concrete. Journal of Reinforced Plastics and
Composites 36(7): 519-552.
Angulo-Ibáñez, Q. 2017. Performance analysis of wooden
reinforcement in rammed earth walls. Periodica Polytechnica Civil Engineering 61(4): 882-888.
Archila,
H., Harries, K.A., Kaminski, S., Trujillo, D. & Escamilla, E.Z. 2018.
Bamboo reinforced concrete: A critical review. Materials and Structures 51(102): 1-18.
Audu,
M.T. & Raheem, A.A. 2017. Flexural behavior of fanpalm reinforced concrete slabs. Journal of
Building Engineering 13: 63-67.
BSN SNI 1974:2011. 2011. Concrete Compressive Strength Test Methods with
Cylindrical Specimens. Indonesia: Badan Standardisasi Nasional (BSN).
BSN SNI 15-2049-2004. 2004. Portland Cement. Indonesia: Badan Standardisasi Nasional (BSN).
BSN SNI 03-1968-1990. 1990. Testing Method on Sieve
Analysis of Fine and Coarse Aggregate. Indonesia: Badan Standardisasi Nasional
(BSN).
Bhonde,
D., Nagarnaik, P.B., Parbat, D.K. & Waghe, U.P. 2014. Experimental investigation of bamboo
reinforced concrete slab. American
Journal of Engineering Research 3(1): 128-131.
Chithambaram,
S.J. & Kumar, S. 2017. Flexural behaviour of
bamboo based ferrocement slab panels with flyash. Construction and Building Materials 134: 641-648.
Dewi,
S.M & Nuralinah, D. 2017. The recent research on
bamboo reinforced concrete. In MATEC Web
of Conferences 103: 02001.
Dey, A. & Chetia, N. 2018.
Experimental study of bamboo reinforced concrete beams having various
frictional properties. Materials Today:
Proceeding 5(1): 436-444.
Fergusson-Calwell, T.C. 2015.
Viability of bamboo reinforced concrete for residential housing in Indonesia.
Bachelor Thesis: Charles Darwin University (Unpublished).
Ghavami, K. 2005. Bamboo as reinforcement in structural
concrete elements. Cement and Concrete
Composites 27(6): 637-349.
Ghavami, K. 1995. Ultimate load behaviour of bamboo-reinforced lightweight concrete beams. Cement and Concrete Composites 17(4): 281-288.
Haryanto, Y., Hu, H.T., Han, A.L., Wariyatno N.G., Sudibyo, G.H., Hidayat,
B.A. & Naqiyah, K. 2019a. Precast segmental
bamboo reinforced concrete beams with bolted connections subjected to flexural
loads: An experimental investigation. In IOP
Conference Series: Material Science and Engineering. p. 615.
Haryanto, Y., Hu, H.T., Han, A.Y., Atmajayanti,
A.T., Galuh, D.L.C. & Hidayat,
B.A. 2019b. Finite element analysis of T-section RC beams strengthened by wire
rope in the negative moment region with an addition of steel rebar at the
compression block. Jurnal Teknologi 81(4): 143-154.
Haryanto, Y., Gan, B.S., Widyaningrum, A., Wariyatno, N.G.
& Fadli, A. 2018. On the performance of steel
wire rope as the external strengthening of RC beams with different end-anchor
type. Jurnal Teknologi 80(5): 145-154.
Haryanto, Y., Gan, B.S. & Maryoto,
A. 2017. Wire rope flexural bonded strengthening system on RC-beams: A finite
element simulation. International Journal
of Technology 8(1): 134-144.
Haryanto, Y., Gan, B.S., Widyaningrum, A. & Maryoto,
A. 2017. Near surface mounted bamboo reinforcement for flexural strengthening
of reinforced concrete beams. Jurnal Teknologi79(6): 233-240.
Haryanto, Y., Satyarno, I. & Sulistyo, D. 2012. Strength and ductility of reinforced
concrete T-beams strengthened in the negative moment region with wire rope and
mortar composite. Civil Engineering Forum 21(1): 1163-1169.
Hidayat,
B.A., Hu, H.T., Han, A.L., Haryanto, Y., Widianingrum,
A. & Pamudji, G. 2019. Nonlinear finite element
analysis of traditional flexural strengthening using betung bamboo (Dendrocalamus asper) on
concrete beams. In IOP Conference Series:
Material Science and Engineering. p. 615.
Ismail, R., Bon, Y.C., Adiba, N., Joolkeepri & Ishak, I.S.
2018. Strength behavior of bamboo-reinforced concrete slabs. In IOP Conference Series: Materials Science and
Engineering. p. 431.
Kankam,
C.K. & Odum-Ewuakye, B. 2006. Babadua reinforced concrete two-way slabs subjected to concentrated loading. Construction and Building Materials 20(5): 279-285.
Kankam,
C.K. & Odum-Ewuakye, B. 2001. Flexural behaviour of babadua reinforced
one-way slabs subjected to third-point loading. Construction and Building Materials 15(1): 27-33.
Karthik, S., Rao, P.R.M. & Awoyera,
P.O. 2017. Strength properties of bamboo and steel reinforced concrete
containing manufactured sand and mineral admixtures. Journal of King Saud University - Engineering Sciences 29(4):
400-406.
Mali, P.R. & Datta, D. 2018. Experimental evaluation of
bamboo reinforced concrete slab panels. Construction
and Building Materials 188: 1092-1100.
Maruthupandian,
G., Saravanan, R., Kumar, S.S. & Sivakumar, B.G. 2016. A study on bamboo
reinforced concrete slabs. Journal of
Chemical and Pharmaceutical Science 9(2): 978-980.
Moroz,
J.G., Lissel, S.L. & Hagel, M.D. 2014.
Performance of bamboo reinforced concrete masonry shear walls. Construction and Building Materials 61:
125-137.
Nahar, T.T. & Rahman, M.M. 2015. Strengthening of RCC
beams using bamboo sticks. International
Journal of Advanced Science and Technology 79: 15-24.
Puri,
V., Chakrabortty, P., Anand, S. & Majumdar, S.
2017. Bamboo reinforced prefabricated wall panels for low cost housing. Journal of Building Engineering 9:
52-59.
Rahman, M.M., Rashid, M.H., Hossain, M.A., Hasan, M.T. &
Hasan, M.K. 2011. Performance evaluation of bamboo reinforced concrete beam. International Journal of Engineering &
Technology 11(4): 142-146.
Reid, S.G. 1985. The flexural rigidity of reinforced
concrete slabs. Computers &
Structures 20(6): 929-938.
Sen, T. & Reddy, H.N.J. 2011. A numerical study of
strengthening of RCC beam using natural bamboo fibre. International Journal of Computer Theory
and Engineering 3(5): 707-713.
Sharma, B., Gatóo,
A. & Ramage, M.H. 2015a. Effect of
processing methods on the mechanical properties of engineered bamboo. Construction and Building Materials 83: 95-101.
Sharma, B., Gatóo, A., Bock, M., Mulligan, & Ramage, M.H. 2015b.
Engineered bamboo: State of the art. Proceeding
of the Institution of Civil Engineers - Construction Materials 168(2):
57-67.
Terai, M.
& Minami, K. 2011. Fracture behavior and mechanical properties of bamboo
reinforced concrete members. Procedia
Engineering 10: 2967-2972.
Wariyatno,
N.G., Haryanto, Y. & Sudibyo,
G.H. 2017. Flexural behaviour of precast hollow core
slab using PVC pipe and styrofoam with different
reinforcement. Procedia Engineering 171: 909-916.
Wibowo, A., Wijatmiko, I. & Nainggolan, C.R. 2017.
Structural behavior of lightweight bamboo reinforced concrete slab with EPS
infill panel. In AIP Conference
Proceedings. p. 1887.
Xiao, Y., Yang, R.Z. & Shan, B. 2013. Production,
environmental impact and mechanical properties of glubam. Construction and Build Materials 44:
765-773.
Xu, Q., Chen, X., Chen, J.F., Harries, K.A., Chen, L. &
Wang, Z. 2019. Seismic strengthening of masonry walls using bamboo components. Advances in Structural Engineering 22(14):
1-16.
Zhu, M., Long, Y., Jiang, Q. & Li, J. 2015. Experimental
study on bending bearing capacity of bamboo-reinforced concrete plate. In Proceeding of 2015 International Forum on
Energy, Environment Science and Materials. pp. 526-531.
Zuhri,
M.Y.M., Liao, Y., Wang, Q.Y. & Guan, Z.W. 2017. The energy absorbing
properties of bamboo-based structures. Journal
of Sandwich Structures and Materials 21(3): 1032-1054.
*Corresponding
author; email: hthu@ncku.edu.tw
|