Sains Malaysiana 50(1)(2021): 23-33
http://dx.doi.org/10.17576/jsm-2021-5001-03
Involvement of Phenolic
Compounds and Their Composition in the Defense Response of Fusarium oxysporum infected Berangan Banana Plants
(Penglibatan Sebatian Fenolik dan Komposisinya dalam Tindak Balas Pertahanan Pokok Pisang Berangan yang dijangkiti Fusarium oxysporum)
FUNG
SHI MING, ZULIANA RAZALI & CHANDRAN SOMASUNDRAM*
Institute of
Biological Sciences & Centre for Research in Biotechnology for Agriculture
(CEBAR), Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
Received: 18 June
2019/Accepted: 24 June 2020
ABSTRACT
Fusarium wilt is one of the most common destructive banana diseases which causes great
losses to the global banana production. Berangan banana, known to be very susceptible towards this disease is greatly affected.
Upon infection, oxidative burst involving rapid accumulation of reactive oxygen
species is one of the first responses of a plant defense against biotic and
abiotic stress. Secondary metabolites play an essential role in scavenging
these toxic reactive radicals. In this study, a number of phenolic compounds
and flavonoids were identified and the changes were documented. Compounds such
as quinic acid, ferulic acid, caffeoyl glucose, p-coumaric acid, syringic acid, sinapic acid, aconitic acid, caffeic acid, p-hydroxybenzoic acid, ascorbic acid, kaempferol-rhamnose-hexose,
quercetin, catechin, rutin,
and isorhamnetin 3-O rutinoside increased after fungal infection. Concomitantly, DPPH radical scavenging
activity, reducing power, total antioxidant activity, total flavonoid content
and total polyphenol content also increased. Polyphenols, flavonoid content and
antioxidant activities increased significantly on day 1 and continued to
increase until day 6 before gradually declining. The phenolic and flavonoid
profiles were analysed using liquid chromatography -
mass spectroscopy (LCMS). The antioxidant properties were found to be closely
related to plant defense system.
Keywords: Antioxidant
properties; Berangan banana; flavonoid; Fusarium wilt; phenolics
ABSTRAK
Kelayuan fusarium merupakan salah satu penyakit pisang yang seringkali menyebabkan kerugian besar dalam pengeluaran pisang di peringkat dunia. Pisang Berangan yang diketahui sangat rentan kepada penyakit ini adalah sangat terkesan dengan penyakit tersebut. Selepas dijangkiti, tekanan oksidatif yang melibatkan pengumpulan spesies oksigen reaktif dengan pantas merupakan salah satu tindak balas pertama pertahanan tumbuhan terhadap tekanan biotik dan abiotik. Metabolit sekunder memainkan peranan yang amat penting dalam memerangkap radikal reaktif toksik ini. Dalam kajian ini, sebilangan sebatian fenolik dan flavonoid telah dikenal pasti dan perubahannya telah didokumentasikan. Sebatian seperti asid kuinik, asid ferulik, glukosa kaffeoil, asid p-koumarik, asid syringik, asid sinapik, asid akonitik, asid kafeik, asid p-hidroksibenzoik, asid askorbik, kaempferol-rhamnosa-heksosa,
quercetin, katechin, rutin dan isorhamnetin 3-O rutinosid didapati meningkat selepas jangkitan kulat. Seiring dengan itu, aktiviti pembersihan radikal DPPH, daya penurunan, aktiviti antioksidan total, kandungan flavonoid total dan kandungan polifenol juga meningkat. Polifenol, kandungan flavonoid dan aktiviti antioksidan meningkat secara signifikan pada hari pertama selepas jangkitan kulat dan terus meningkat sehingga hari keenam sebelum menurun secara beransur-ansur. Profil fenolik dan flavonoid dianalisis menggunakan kromatografi cecair-spektroskopi massa (LCMS). Sifat antioksidan yang dicerap didapati berkait rapat dengan sistem pertahanan tumbuhan.
Kata kunci: Fenolik; flavonoid; Fusarium wilt; pisang Berangan; sifat antioksidan
REFERENCES
Anthony,
K.K., George, D.S., Singh, H.K.B., Fung, S.M., Santhirasegaram,
V., Razali, Z. & Somasundram,
C. 2017. Reactive oxygen species activity and antioxidant properties of Fusarium infected
bananas. Journal of Phytopathology 165(4): 2213-2222.
Bae, S.H. & Suh, H.J.
2007. Antioxidant activities of five different mulberry cultivars in Korea. LWT - Food Science and Technology 40(6): 955-962.
Belajova,
E. & Suhaj, M. 2004. Determination of phenolic
constituents in citrus juices: Method of high performance liquid
chromatography. Food Chemistry 86(3): 339-343.
de Ascensao, A.R.F.D.C. & Dubery,
I.A. 2003. Soluble and wall-bound phenolics and
phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry 63(6): 679-686.
Englberger, L., Darnton-Hill, I.,
Coyne, T., Fitzgerald, M.H. & Marks, G.C. 2003. Carotenoid-rich
bananas: A potential food source for alleviating vitamin A deficiency. Food and Nutrition Bulletin 24(4): 303-318.
FAO.
2016. WBF fighting against banana threats - WBF Task Force on Fusarium wilt
Tropical Race 4 (TR4). http://www.fao.org/economic/worldbananaforum/fusarium.
FAO.
2014. FAO and partners call for a global response to deadly banana disease. http://www.fao.org/news/story/en/item/271647/icode/.
Hartmann,
T. 1991. Alkaloids. In Herbivores: Their
Interactions with Secondary Plant Metabolites (2nd edition) - The Chemical
Participants, edited by Rosenthal, G.A. & Berenbaum,
M.R. San Diego. pp. 79-121.
Huckelhoven,
R. 2007. Cell wall-associated mechanisms of disease resistance and
susceptibility. Annual Review of
Phytopathology 45: 101-127.
Johnson,
M.T.J., Smith, S.D. & Rausher, M.D. 2009. Plant
sex and the evolution of plant defenses against herbivores. Proceeding of the National Academy of
Science of the United States of America 106(43): 18079-18084.
Kalisz,
S., Oszmianski, J. & Wojdylo,
A. 2015. Increased content of phenolic compounds in pear leaves after infection
by the pear rust pathogen. Physiological
and Molecular Plant Pathology 91:
113-119.
Li, C., Zuo, C.,
Deng, G., Kuang, R., Yang, Q., Hu, C., Sheng, Q.,
Zhang, S., Ma, L., Wei, Y., Yang, J., Liu, S., Biswas, M.K., Viljoen, A. & Yi, G. 2013. Contamination of bananas with Beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS ONE 8(7): e70226.
Mazid, M., Khan, T.A. & Mohammad, F. 2011. Role of secondary
metabolites in defense mechanism of plants. Biology
and Medicine 3(2): 232-249.
Mierziak,
J., Kostyn, K. & Kulma,
A. 2014. Flavonoids as important molecules of plant interactions with the
environment. Molecules 19(10): 16240-16265.
Oyaizu,
M. 1986. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and
Dietetics 44(6): 307-315.
Paul,
J.Y., Khanna, H., Kleidon, J., Hoang, P., Geijskes, J., Daniells, J., Zaplin, E., Rosenberg, Y., James, A., Mlalazi,
B., Deo, P., Arinaitwe, G., Namanya, P., Becker, D., Tindamanyire,
J., Tushemereirwe, W., Harding, R. & Dale, J.
2017. Golden bananas in the field: Elevated fruit pro-vitamin A from the
expression of a single banana transgene. Plant
Biotechnology Journal 15(4): 520-532.
Purwati, R.D., Hidayah, N., Sudjindro & Sudarsono. 2008.
Inoculation methods and conidial densities of Fusarium oxysporum f.sp. cubense in
Abaca. HAYATI Journal of Biosciences 15(1): 1-7.
Robertson, A.E. 2014. First report of Fusarium oxysporum f.
sp. cubense tropical race 4 associated with Panama disease of banana outside Southeast
Asia. Plant Disease 98(5): 694-698.
Sakanaka,
S., Tachibana, Y. & Okada, Y. 2005. Preparation and antioxidant properties
of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chemistry 89(4): 569-575.
Santhirasegaram,
V., Razali, Z., George, D.S. & Somasundram, C. 2015. Effects of thermal and non-thermal
processing on phenolic compounds, antioxidant activity and sensory attributes
of Chokanan mango (Mangifera indica L.) juice. Food and Bioprocess Technology 8: 2256-2267.
Simmonds,
M.S.J. 2003. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry 64(1): 21-30.
Srivastava, S.,
Pathak, N. & Srivastava, P. 2011. Identification of limiting factors for
the optimum growth of Fusarium oxysporum in
liquid medium. Toxicology International 18(2): 111-116.
Torres,
M.A., Jones, J.D.G. & Dangl, J.L. 2006. Reactive
oxygen species signaling in response to pathogens. Plant Physiology 141(2): 373-378.
Treutter, D. 2006.
Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters 4: 147-157.
Tripathy,
B.C. & Oelmüller, R. 2012. Reactive oxygen
species generation and signaling in plants. Plant Signaling & Behavior 7(12): 1621-1633.
Vishwanath, S., Chandrashekar, S.C., Rajanna,
M.D. & Tejavathi, D.H. 2011. Histopathology of Banana infected with Fusarium oxysporum f.
sp. cubense (E. F. Sm.) Synd. & Hans. Pest
Technology 5(1): 63-66.
War, A.R., Paulraj,
M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S. & Sharma, H.C. 2012. Mechanisms of
plant defense against insect herbivores. Plant
Signaling & Behavior 7(10): 1306-1320.
Xu,
G., Liu, D., Chen, J., Ye, X., Ma, Y. & Shi, J. 2008. Juice components and
antioxidant capacity of citrus varieties cultivated in China. Food Chemistry 106(2): 545-551.
Zhang, L., Cenci, A., Rouard, M., Zhang, D., Wang, Y., Tang, Y. & Zheng, S.
2019. Transcriptomic analysis of resistance and susceptible banana corms in
response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Scientific Reports 9: 8199-8212.
*Corresponding author; email:
chandran@um.edu.my
|