Sains Malaysiana 50(1)(2021): 261-278
http://dx.doi.org/10.17576/jsm-2021-5001-25
A Bayesian Approach for Estimation of Coefficients of
Variation of Normal Distributions
(Pendekatan Bayesian untuk Anggaran Pekali Variasi Taburan Normal)
WARISA
THANGJAI1, SA-AAT NIWITPONG2* & SUPARAT
NIWITPONG2
1Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
2Department of Applied Statistics, Faculty of
Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok
10800, Thailand
Received: 26 October 2019/Accepted: 30 June 2020
ABSTRACT
The coefficient of variation is widely used
as a measure of data precision. Confidence intervals for a single coefficient
of variation when the data follow a normal distribution that is symmetrical and
the difference between the coefficients of variation of two normal populations
are considered in this paper. First, the confidence intervals for the coefficient
of variation of a normal distribution are obtained with adjusted generalized
confidence interval (adjusted GCI), computational, Bayesian, and two adjusted
Bayesian approaches. These approaches are compared with existing ones comprising two approximately unbiased estimators,
the method of variance estimates recovery (MOVER) and generalized confidence
interval (GCI). Second, the confidence intervals for the difference between the
coefficients of variation of two normal distributions are proposed using the
same approaches, the performances of which are then compared with the existing
approaches. The highest posterior density interval was used to estimate the
Bayesian confidence interval. Monte Carlo simulation was used to assess the
performance of the confidence intervals. The results of the simulation studies
demonstrate that the Bayesian and two adjusted Bayesian approaches were more
accurate and better than the others in terms of coverage probabilities and
average lengths in both scenarios. Finally, the performances of all of the
approaches for both scenarios are illustrated via an empirical study with two
real-data examples.
Keywords: Bayesian approach; coefficient of
variation; difference; normal distribution; simulation
ABSTRAK
Pekali variasi digunakan
secara meluas sebagai ukuran ketepatan data. Selang kepercayaan untuk pekali
variasi tunggal apabila data mengikuti taburan normal yang simetris dan
perbezaan antara pekali variasi dua populasi normal dipertimbangkan dalam
makalah ini. Pertama, selang kepercayaan untuk pekali variasi sebaran normal
diperoleh dengan selang kepercayaan umum yang disesuaikan (GCI disesuaikan),
pengiraan, Bayesian dan dua pendekatan Bayesian yang disesuaikan. Pendekatan
ini dibandingkan dengan pendekatan sedia ada yang terdiri daripada dua
penganggar yang tidak berat sebelah, kaedah pemulihan anggaran varians (MOVER)
dan selang kepercayaan umum (GCI). Seterusnya, selang kepercayaan untuk
perbezaan antara koefisien variasi dua taburan normal diusulkan menggunakan
pendekatan yang sama, persembahannya kemudian dibandingkan dengan pendekatan
yang ada. Selang ketumpatan posterior tertinggi digunakan untuk menganggar
selang keyakinan Bayesian. Simulasi Monte Carlo digunakan untuk menilai
prestasi selang kepercayaan. Hasil kajian simulasi menunjukkan bahawa
pendekatan Bayesian dan dua Bayesian yang disesuaikan lebih tepat dan lebih
baik daripada yang lain daripada segi kebarangkalian liputan dan panjang purata
dalam kedua-dua senario tersebut. Akhirnya, prestasi semua pendekatan untuk kedua-dua
senario digambarkan melalui kajian empirik dengan dua contoh data sebenar.
Kata kunci: Pendekatan
Bayesian; pekali variasi; perbezaan; simulasi; taburan normal
REFERENCES
Bayes,
T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical
Transactions of the Royal Society of London 53: 370-418.
Bernat, D.H., Lazovich,
D., Forster, J.L., Oakes, J.M. & Chen, V. 2009. Area-level variation in
adolescent smoking. Preventing Chronic Disease 6(2): 1-8.
Camara, V.A.R. 2012. New approximate
Bayesian confidence intervals for the coefficient of variation of a Gaussian distribution. Journal of
Modern Applied Statistical Methods 11(1): 158-166.
Camara, V.A.R. 2003. Approximate Bayesian
confidence intervals for the variance of a Gaussian distribution. Journal of
Modern Applied Statistical Methods 2(2): 350-358.
Chow, P.K., Wan, C.P., Yip, S.P. Tsim,
Y.L., Tsang, K.S., Li, K.F., Wong, H.F., Leung, K.K. & Lee, W.C. 1998. Haematology & Serology. Hong Kong Medical
Technology Association Quality Assurance Programme Biennial Report 1997 & 98: 15-27.
Donner,
A. & Zou, G.Y. 2012.
Closed-form confidence intervals for functions of the normal mean and standard
deviation. Statistical Methods in
Medical Research 21(4):
347-359.
Doornbos, R. & Dijkstra, J.B. 1983. A multi sample test for the
equality of coefficients of variation in normal populations. Communications
in Statistics-Simulation and Computation 12(2): 147-158.
Fung, W.K. & Tsang, T.S. 1998. A simulation study
comparing tests for the equality of coefficients of variation. Statistics in
Medicine 17(17): 2003-2014.
Gelman, A., Carlin, J.B., Stern, H.S., Dunson,
D.B., Vehtari, A. & Rubin, D.B. 2013. Bayesian
Data Analysis. Florida: Chapman and Hall/CRC. pp. 29-62.
Gül, H.H., Gökpinar, E., Ebegil, M., Özdemir, Y.A. & Gökpinar, F. 2019. A new test for the homogeneity of inverse
Gaussian scale parameters based on computational approach test. Sains Malaysiana 48(8): 1777-1785.
Gulhar, M., Kibria, B.M.G., Albatineh, A.N. & Ahmed, N.U. 2012. A comparison of some confidence intervals for estimating the
population coefficient of variation: A simulation study. Statistics and
Operations Research Transactions 36(1): 45-68.
Harvey,
J. & van der Merwe, A.J. 2012. Bayesian confidence intervals for means and
variances of lognormal and bivariate lognormal distributions. Journal of
Statistical Planning and Inference 142(6): 1294-1309.
Harvey,
J., Groenewald, P.C.N. & van der Merwe, A.J. 2010. Bayesian Confidence
Intervals for the Mean of a Lognormal Distribution: A Comparison with the MOVER
and Generalized Confidence Interval Procedure. Technical Report No. 408.
Department of Statistics and Actuarial Science, University of the Free State.
pp. 1-28.
Kang,
C.W., Lee, M.S., Seong, Y.J. & Hawkins, D.M.
2007. A control chart for the coefficient of variation. Journal of Quality
Technology 39(2): 151-158.
Krishnamoorthy, K., Mathew, T. & Ramachandran, G. 2006.
Generalized P-values and confidence intervals: A novel approach for analyzing lognormally distributed exposure data. Journal of
Occupational and Environmental Hygiene 3(11): 642-650.
Lim,
S.L., Yeong, W.C., Khoo,
M.B.C. & Chew, X.Y. 2018. A comparison of the variable sampling interval
(VSI) and variable sample size (VSS) coefficient of variation charts. Proceedings
of the 4th World Congress on Mechanical, Chemical, and Material Engineering 129:
1-8.
Liu,
S., Qin, G., Wang, B. & Zhou, H. 2015. Confidence interval
estimation for coefficient of variation. Georgia State University, M.Sc.
Thesis (Unpublished).
Mahmoudvand, R. & Hassani, H. 2009. Two new confidence intervals for
the coefficient of variation in a normal distribution. Journal of Applied
Statistics 36(4): 429-442.
McKay, A.T. 1932. Distribution of the
coefficient of variation and the extended ‘t’ distribution. Journal of Royal
Statistics Society 95(4): 695-698.
Menzefricke, U. 2010. Control charts for the variance
and coefficient of variation based on their predictive distribution. Communications
in Statistics-Theory and Methods 39(16): 2930-2941.
Niwitpong, S. 2015. Confidence intervals for the
difference between coefficients of variation of normal distribution with
bounded parameters. Far East Journal of Mathematical Sciences 98(5):
649-663.
Rao, K.A. & D’Cunha, J.G.
2016. Bayesian inference for median of the lognormal distribution. Journal
of Modern Applied Statistical Methods 15(2): 526-535.
Saelee,
V., Kornpetpanee, S. & Wongkasem,
P. 2013. An examination of the variability of agricultural production using a
new approximate confidence interval for the coefficient of variation. ScienceAsia 39: 440-443.
Singh,
M. 1993. Behavior of sample coefficient of variation drawn from several
distributions. Sankya 55(1): 65-76.
Taye, G. & Njuho,
P. 2008. Monitoring field variability using confidence interval for coefficient
of variation. Communications in Statistics-Theory and Methods 37(6):
831-846.
Thangjai, W., Niwitpong, S.
& Niwitpong, S. 2020. Adjusted generalized confidence intervals for the common
coefficient of variation of several normal populations. Communications
in Statistics-Simulation and Computation 49(1): 194-206.
Thangjai, W., Niwitpong, S.
& Niwitpong, S. 2019. Simultaneous confidence intervals
for all differences of coefficients of variation of log-normal distributions. Hacettepe Journal of Mathematics and Statistics 48(5): 1505-1521.
Tian, L. 2005. Inferences on the common coefficient
of variation. Statistics in Medicine 24(14): 2213-2220.
Tongmol, N., Srisodaphol,
W. & Boonyued, A. 2016. A Bayesian approach to
the one-way ANOVA under unequal variance. Sains Malaysiana 45(10): 1565-1572.
van Zyl, R. & van der Merwe, A.J. 2017. A Bayesian
control chart for a common coefficient of variation. Communications in
Statistics-Theory and Methods 46(12): 5795-5811.
Vangel, M.G. 1996.
Confidence intervals for a normal coefficient of variation. Journal American
Statistical Association 50(1): 21-26.
Verrill,
S. & Johnson, R.A. 2007. Confidence bounds and hypothesis tests for normal
distribution coefficients of variation. Communications in Statistics-Theory
and Methods 36(12): 2187-2206.
Weerahandi,
S. 1995. Exact Statistical Methods for Data Analysis. New York:
Springer-Verlag. pp. 57-58.
Wong,
A.C.M. & Wu, J. 2002. Small sample asymptotic inference for the coefficient of
variation: Normal and nonnormal models. Journal of
Statistical Planning and Inference 104(1): 73-82.
Zhang,
J., Li, Z. & Wang, Z. 2018. Control chart for monitoring the coefficient of
variation with an exponentially weighted moving average procedure. Quality
and Reliability Engineering International 34(2): 188-202.
Zou,
G.Y., Huo, C.Y. & Taleban,
J. 2009. Simple confidence intervals for lognormal means and their differences
with environmental applications. Environmetrics 20(2): 172-180.
*Corresponding
author; email: sa-aat.n@sci.kmutnb.ac.th
|