Sains Malaysiana 50(1)(2021): 63-72

http://dx.doi.org/10.17576/jsm-2021-5001-07

 

The Morphological and Biochemical Effects of Feeding Hooker's Pitcher with Formica fusca or Calliphora vicina Larvae

(Kesan Morfologi dan Biokimia terhadap Pemberian Makan Periuk Kera Hooker dengan Formica fusca atau Larva Calliphora vicina)

 

JACEK WRÓBEL1, MARIOLA WRÓBEL2, URSZULA PRZYBYLSKA1 & ARKADIUSZ TELESIŃSKI1*

 

1Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, 17 Słowackiego St, 71-434 Szczecin, Poland

 

2Department of Landscape Architecture, West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, 3A Papieża Pawła VI St, 71-459 Szczecin, Poland

 

Received: 3 September 2018/Accepted: 16 Jun 2020

 

ABSTRACT

The aim of this study was to determine if feeding Hooker's pitcher (Nepenthes × hookeriana) with blowfly larvae (Calliphora vicina Rob-Desvoidy) or ants (Formica fusca L.) affected the plant’s biometric and biochemical parameters. The research included measurements of length and width of the laminae and pitchers, and the total contents of the ash, assimilation pigments, polyphenols, and flavonoids. These parameters were measured 30 days after the last feeding. This study demonstrated that feeding the plants with blowfly larvae resulted in increases in the lengths and widths of both the laminae and pitchers. Moreover, the laminae had reduced carotenoid content after feeding with blowfly larvae and ants whereas the pitchers of Hooker’s pitcher had increased chlorophyll and carotenoid content after feeding with blowfly larvae. Feeding Hooker’s pitcher with blowfly larvae also resulted in a reduction of the total polyphenol content in the laminae whereas the total flavonoid content increased in both the laminae and pitchers of Hooker’s pitcher. Feeding Nepenthes × hookeriana with insects ensures that their nutritional needs are met and leads to pitchers with good physiological condition.

 

Keywords: Assimilation pigments; Hooker’s pitcher; laminae; pitchers; polyphenols

 

ABSTRAK

Tujuan kajian ini adalah untuk menentukan sama ada dengan memberi makan periuk kera Hooker (Nepenthes × hookeriana) dengan larva langau (Calliphora vicina Rob-Desvoidy) atau semut (Formica fusca L.) dapat mempengaruhi parameter biometrik dan biokimia tumbuhan tersebut. Penyelidikan ini merangkumi pengukuran panjang dan lebar lamina serta periuk kera dan juga kandungan keseluruhan abu, pigmen asimilasi, polifenol serta flavonoid. Parameter ini diukur 30 hari selepas pemberian makanan terakhir. Kajian ini menunjukkan bahawa pemberian makanan kepada tumbuhan ini dengan larva langau meningkatkan panjang dan lebar kedua-dua lamina dan periuk kera. Tambahan pula, kandungan karotenoid lamina berkurangan setelah diberi larva langau dan semut sedangkan terdapat peningkatan kandungan klorofil dan karotenoid selepas periuk kera Hooker diberi larva langau. Pemberian larva langau kepada periuk kera Hooker mengakibatkan pengurangan jumlah kandungan polifenol dalam lamina manakala jumlah kandungan flavonoid meningkat dalam kedua-dua lamina dan periuk kera Hooker. Pemberian serangga kepada Nepenthes × hookeriana dapat memastikan bahawa keperluan pemakanan mereka dipenuhi dan menghasilkan periuk kera dengan keadaan fisiologi yang baik.

 

Kata kunci: Lamina; periuk kera; periuk kera Hooker; pigmen asimilasi; polifenol

 

REFERENCES

Adamec, L. 2010. Dark respiration of leaves and traps of terrestrial carnivorous plants: Are there greater energetic costs in traps? Central European Journal of Biology 5: 121-124.

Adamec, L. 1997. Mineral nutrition of carnivorous plants: A review. The Botanical Review 63(3): 273-299.

Adlassing, W., Peroutka, M. & Lendl, T. 2011. Traps of carnivorous pitcher plants as a habitat: Composition of the fluid, biodiversity and mutualistic activities. Annals of Botany 107: 181-194.

Adlassing, W., Peroutka, M., Lambers, H. & Lichtscheidl, I.K. 2005. The roots of carnivorous plants. Plant and Soil 274: 124-140.

Arnon, D.I., Allen, M.B. & Whatley, F.R. 1956. Photosynthesis by isolated chloroplasts. Biochimica et Biophysica Acta 20: 449-461.

Ashraf, M. & Harris, P.J.C. 2013. Photosynthesis under stressful environments: An overview. Photosynthetica 51(2): 163-190.

AOAC. 2000. Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists (AOAC).

Bazile, V., Le Moguédec, G., Marshall, D. & Gaume, L. 2015. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants. Annals of Botany 115: 705-716.

Bazile, V., Moran, J.A., Le Moguédec, G., Marshall, D.J. & Gaume, L. 2012. A carnivorous plant fed by its ant symbiont: A unique multi-faceted nutritional mutualism. PLoS ONE 7(5): e36179.

Bechie, S.W. & Bidochka, M.J. 2013. Insects as a nitrogen source for plants. Insects 4(3): 413-424.

Biczak, R., Śnioszek, M., Telesiński, A. & Pawłowska, B. 2017. Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions. Ecotoxicology and Environmental Safety 139: 463-471.

Bringmann, G. & Feineis, D. 2001. Stress-related polyketide metabolism of Dioncophyllaceae and Ancistrocladaceae. Journal of Experimental Botany 52: 2015-2022.

Bruzzese, B.M., Bowler, R., Massicotte, H.B. & Fredeen, A.L. 2010. Photosynthetic light response in three carnivorous plant species: Drosera rotundifolia, D. capensis and Sarracenia leucophylla. Photosynthetica 48: 103-109.

Chen, Y., Lin, F., Yang, H., Yue, L., Hu, F., Wang, J., Luo, Y. & Cao, F. 2014. Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: Relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiologiae Plantarum 36: 3173-3187.

Davison, P.A., Hunter, C.N. & Horton, P. 2002. Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203-206.

Dhamecha, D., Jalalpure, S. & Jadhav, K. 2016. Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: Characterization and biocompatibility studies. Journal of Photochemistry and Photobiology B: Biology 154: 108-117.

Eilenberg, H., Pnini-Cohen, S., Rahamim, Y., Sionov, E., Segal, E., Carmeli, S. & Zilberstein, A. 2010. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. Journal of Experimental Botany 61(3): 911-922.

Ellison, A.M. & Adamec, L. 2011. Ecophysiological traits of terrestrial and aquatic carnivorous plants: Are the costs and benefits the same? Oikos 120: 1721-1731.

Farnsworth, E.J. & Ellison, A.M. 2008. Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. Journal of Ecology 96: 213-221.

Grafe, T.U. & Kohout, R.J. 2013. A new case of ants nesting in Nepenthes pitcher plants. Ecotropica 19: 77-80.

He, J. & Zain, A. 2012. Photosynthesis and nitrogen metabolism of Nepenthes alata in response to inorganic NO3 and organic prey N in the greenhouse. International Scholarly Research Notices 2012: Article ID. 263270.

Karagatzides, J.D. & Ellison, A.M. 2009. Construction costs, payback times, and the leaf economics of carnivorous plants. American Journal of Botany 96: 1612-1619.

Kumaran, A. & Karunakaran, R.J. 2007. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Food Science and Technology 40: 344-351.

Li, F., Vallabhaneni, R., Yu, J., Rocheford, T. & Wurtzel, E.T. 2008. The maize phytoene synthase gene family: Overlapping roles for carotenogenesis in endosperm, photomorphogenesis and thermal stress tolerance. Plant Physiology 147: 1334-1346.

Lichtenthaler, H. & Wellburn, A. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions 603: 591-592.

Marina, M.T., Keen, C.J., Caroline, B.R. & Afsar, J. 2018. Fauna diversity in pitcher plants at Setiam Hill, Bintulu, Sarawak, Malaysia. Sains Malaysiana 47(1): 19-25.

Maxwell, K. & Johnson, G.N. 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51: 659-668.

Méndez, M. & Karlsson, P.S. 1999. Costs and benefits of carnivory in plants: Insights from photosynthetic performance of four carnivorous plants in a subarctic environment. Oikos 86: 105-112.

Miguel, S., Hehn, A. & Bourgaud, F. 2018. Nepenthes: State of the art of an inspiring plant for biotechnologists. Journal of Biotechnology 265: 109-115.

Moran, J.A., Booth, W.E. & Charles, J.K. 1999. Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species: Implications for prey capture. Annals of Botany 83: 521-528.

Moran, J.A. & Clarke, C.M. 2010. The carnivorous syndrome in Nepenthes pitcher plants: Current state of knowledge and potential future directions. Plant Signaling and Behavior 5(6): 644-648.

Moran, J.A. & Moran, A.I. 1998. Foliar reflectance and vector analysis reveal nutrient stress in prey-deprived pitcher plants (Nepenthes refflesiana). International Journal of Plant Sciences 159(6): 996-1001.

Netto, A.T., Campostrini, E., de Oliveira, J.G. & Bressan-Smith, R.E. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104: 199-209.

Osunkoya, O.O., Daud, S.D., Di-Gusto, D., Wimmer, F. & Holige, T.M. 2007. Construction costs and physico-chemical properties of the assimilatory organs of Nepenthes species in Nothern Borneo. Annals of Botany 99: 895-906.

Pavlovič, A. & Saganová, M. 2015. A novel insight into the cost-benefit model for the evolution of botanical carnivory. Annals of Botany 115: 1075-1092.

Pavlovič, A., Singerová, L., Demko, V. & Hudák, J. 2009. Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis. Annals of Botany 104: 307-314.

Pawłowska, B., Telesiński, A., Płatkowski, M., Stręk, M., Śnioszek, M. & Biczak, R. 2017. Reaction of spring barley and common radish on the introduction of ionic liquids containing asymmetric cations to the soil. Journal of Agricultural and Food Chemistry 65: 4562-4571.

Ramette, A. 2007. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62(2): 142-160.

Ravee, R., Mohd Salleh, F.I. & Goh, H.H. 2018. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 6: e4914.

Rischer, H., Hamm, A. & Bringmann, G. 2002. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin. Phytochemistry 59: 603-609.

Rosli, M.A., Azizan, K.A. & Goh, H.H. 2018. Antioxidant activity of pitcher extracts from three Nepenthes species. Sains Malaysiana 47(12): 3069-3075.

Sanusi, S.B., Abu Bakar, M.F., Mohamed, M., Sabran, S.F. & Mainasara, M.M. 2017. Ethnobotanical, phytochemical, and pharmacological properties of Nepenthes species: A review. Asian Journal of Pharmaceutical and Clinical Research 10(11): 16-19.

Setiawan, H., Hakim, L. & Batoro, J. 2015. Ethnobotany of Nepenthes spp. in Dayak Seberuang people, West Kalimantan, Indonesia. Journal of Biodiversity and Environmental Sciences 7(6): 275-285.

Thanh, N.V., Thao, N.P., Huong, P.T., Lee, S.H., Jang, H.D., Cuong, N.X., Nam, N.H., Kiem, P.V., Kim, Y.H. & Minh, C.V. 2015. Naphthoquinone and flavonoid constituents from the carnivorous plant Nepenthes mirabilis and their anti-osteoporotic and antioxidant activities. Phytochemistry Letters 11: 254-259.

Thorén, M.L. & Karlsson, P.S. 1998. Effects of supplementary feeding on growth and reproduction of three carnivorous plant species in a subarctic environment. Journal of Ecology 86: 501-510.

Thornham, D.G., Smith, J.M., Grafe, T.U. & Federle, W. 2012. Setting the trap: Cleaning behaviour of Camponotus schmitzi ants increases long-term capture efficiency of their pitcher plant host, Nepenthes bicalcarata. Functional Ecology 26: 11-19.

Tušek, M., Curman, M., Babić, M. & Tkalec, M. 2016. Photochemical efficiency, content of photosynthetic pigments and phenolic compounds in different pitcher parts of Sarracenia hybrids. Acta Botanica Croatica 75(2): 179-185.

Verma, S. & Mishra, S.N. 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology 162: 669-677.

Wang, L., Zhou, Q., Zheng, Y. & Xu, S. 2009a. Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes and its influence on the insect attachment system. Progress in Natural Science: Materials International 19(12): 1657-1664.

Wang, L.S., Wang, L., Wang, L., Wang, G., Li, Z.H. & Wang J.J. 2009b. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the wheat (Triticum aestivum L.) seedlings. Environmental Toxicology 24: 296-303.

Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J. & Qian, M. 2002. Free radical scavenging properties of wheat extracts. Journal of Agricultural and Food Chemistry 50: 1619-1624.

Yulita, K.S. & Mansur, M. 2012. The occurrence of hybrid in Nepenthes hookeriana Lindl. from Central Kalimantan can be detected by RAPD and ISSR markers. HAYATI Journal of Biosciences 19: 18-24.

 

*Corresponding author; email: arkadiusz.telesinski@zut.edu.pl

   

 

 

previous