Sains Malaysiana 50(2)(2021): 287-300
http://dx.doi.org/10.17576/jsm-2021-5002-02
Shear
Failure Mechanism and Acoustic Emission Characteristics of Jointed Rock-Like
Specimens
(Mekanisme Kegagalan Ricih dan Pencirian Pancaran Akustik pada Spesimen Seakan Batuan Berkekar)
YUXIN BAN1, QIANG XIE1,2*, XIANG FU3*,
RINI ASNIDA ABDULLAH4 & JINGJING WANG1
1School of Civil
Engineering, Chongqing University, 400044 Chongqing, People’s Republic of China
2Key Laboratory
of New Technology for Construction of Cities in Mountain Area (Chongqing
University), Ministry of Education, 400044 Chongqing, People’s Republic of
China
3College of
River and Ocean Engineering, Chongqing Jiaotong University, 400074 Chongqing, People’s Republic of China
4School of Civil Engineering, Faculty of
Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
Received:
7 March 2020/Accepted: 2 August 2020
ABSTRACT
Evidence indicate that the stability of
rock mass is highly associated with the shear behaviours of jointed surfaces under the effect of in situ stress
conditions. Understanding the shear failure mechanism of jointed surface has
great significance for tunneling and drilling engineering. Direct shear tests
were conducted on jointed rock-like specimens to investigate the influence of
joint roughness and normal stress on shear failure characteristics. In the
present study, regular triangular sawtooth was produced to simulate different
asperities. Based on the direct shear test, the specimens exhibited four types
of failure modes: damage tend to occur on the sawtooth tips under low normal
stress; whereas damage occurred on a large scale under high normal stress; a
localized region of the sawtooth was worn when the dilation angle was small;
meanwhile the sawtooth tips or base were cut off when the dilation angle was
large. In addition, Acoustic Emission (AE) technology was adopted to
synchronously monitor the development of cracks during testing. Further attempt
has been carried out to simulate the crack initiation, propagation and
coalescence using Particle Flow Code (PFC). The numerical model has
successfully verified and explained the crack behaviors determined by the shear
failure mechanism in the physical test. Additionally, the irregular profile was
introduced in the PFC, it was found that the failure behavior in sawtooth
profile has established a good conclusion to fully understand the failure
mechanism in the irregular profile. This work can provide some reference for
evaluating the behavior of underground engineering composed of jointed rock
masses during the shearing.
Keywords:
Acoustic emission; failure mode; joint surface; particle flow code (PFC)
simulation; shear failure mechanism
ABSTRAK
Bukti telah menunjukkan bahawa kestabilan jisim batuan berkaitan dengan sifat ricih bagi permukaan berkekar disebabkan oleh keadaan tekananin
situ. Memahami mekanisme kegagalan ricih pada permukaan berkekar mempunyai kepentingan besar dalam kejuruteraan terowong dan penggerudian. Ujian ricih secara langsung telah dijalankan pada spesimen seakan batuan berkekar untuk mengkaji pengaruh kekasaran kekar dan tekanan normal pada ciri-ciri kegagalan ricih. Dalam uji kaji ini, gigi gergaji segitiga biasa dihasilkan untuk mensimulasikan asperiti yang berbeza. Hasil uji kaji ricih secara langsung menunjukkan empat jenis mod kegagalan: kerosakan cenderung berlaku pada hujung gigi-gergaji di bawah tekanan normal yang rendah; manakala kerosakan berlaku pada skala besar apabila dikenakan tekanan normal
yang tinggi; kawasan setempat pada gigi gergaji didapati menjadi haus pada sudut perkembangan gigi gergaji yang kecil; sedangkan hujung atau pangkal gigi gergaji terpotong ketika sudut perkembangan gigi gergaji yang besar. Di samping itu, teknologi pancaran akustik (AE) juga digunakan untuk memantau perkembangan retakan semasa ujian. Selanjutnya, inisiasi, perambatan dan petautan retakan disimulasikan secara berangka menggunakan kod aliran zarah (PFC). Model berangka telah berjaya mengesah dan menjelaskan kelakuan retakan yang berlaku semasa kegagalan ricih pada uji kaji fizikal. Tambahan lagi, profil ketaksekataan telah diperkenalkan di dalam PFC dan didapati sifat kegagalan pada profil gigi gergaji telah menghasilkan kesimpulan yang baik dalam memahami mekanisme kegagalan ricih pada profil tak sekata. Hasil kajian ini akan dapat menjadi rujukan untuk menilai sifat kejuruteraan bawah tanah yang terdiri daripada jisim batuan berkekar semasa ricihan.
Kata kunci: Mekanisme kegagalan ricih; mod kegagalan; pancaran akustik; permukaan kekar; simulasi kod aliran zarah (PFC)
REFERENCES
Asadi,
M.S., Rasouli, V. & Barla,
G. 2012. A bonded particle model simulation of shear strength and asperity
degradation for rough rock fractures. Rock
Mechanics and Rock Engineering 45(5): 649-675.
Azinfar,
M.J., Ghazvinian, A.H. & Nejati,
H.R. 2019. Assessment of scale effect on 3D roughness parameters of fracture
surfaces. European Journal of
Environmental and Civil Engineering 23(1): 1-28.
Bahaaddini, M.
2017. Effect of boundary condition on the shear behaviour of rock joints in the direct shear test. Rock
Mechanics and Rock Engineering 50(5): 1141-1155.
Ban, Y., Fu, X. & Xie, Q. 2020. Revealing the laminar shale microdamage
mechanism considering the relationship between fracture geometrical morphology
and acoustic emission power spectrum characteristics. Bulletin of Engineering Geology and the Environment 79(2):
1083-1096.
Bandis,
S.C., Lumsden, A.C. & Barton, N.R. 1983. Fundamentals of rock joint
deformation. International Journal of
Rock Mechanics and Mining Sciences & Geomechanics Abstracts 20(6):
249-268.
Barton, N. 1973. Review of a new
shear-strength criterion for rock joints. Engineering
Geology 7: 287-332.
Barton, N., Bandis,
S. & Bakhtar, K. 1985. Strength deformation and
conductivity coupling of rock joints. International
Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 20(3): 121-140.
Barton, N. & Choubey, V. 1977. The shear strength of rock joints in
theory and practice. Rock Mechanics and
Rock Engineering 10(1-2): 1-54.
Cai, M., Kaiser, P.K., Morioka,
H., Minami, M., Maejima, T., Tasaka,
Y. & Kurose, H. 2007. FLAC/PFC coupled numerical simulation of ae in
large-scale underground excavations. International
Journal of Rock Mechanics and Mining Sciences 44(4): 550-564.
Casagrande, D., Buzzi, O.,
Giacomini, A., Lambert, C. & Fenton, G. 2018. A new stochastic approach to
predict peak and residual shear strength of natural rock discontinuities. Rock Mechanics and Rock Engineering 51(1): 69-99.
Cho, N., Martin, C.D. &
Sego, D.C. 2008. Development of a shear zone in brittle rock subjected to
direct shear. International Journal of
Rock Mechanics and Mining Sciences 45(8): 1335-1346.
Cui, Y. 2019. Effect of joint
type on the shear behavior of synthetic rock. Bulletin of Engineering Geology and the Environment 78(5):
3395-3412.
Fu, X., Xie,
Q. & Liang, L. 2015. Comparison of the Kaiser effect in marble under
tensile stresses between the Brazilian and bending tests. Bulletin of Engineering Geology and the Environment 74(2): 535-543.
Giwelli,
A.A., Sakaguchi, K., Gumati,
A. & Matsuki, K. 2014. Shear behaviour of fractured rock as a function of size and shear displacement. Geomechanics and Geoengineering 9(4)
253-264.
Grasselli,
G., Wirth, J. & Egger, P. 2002. Quantitative three-dimensional description
of a rough surface and parameter evolution with shearing. International Journal of Rock Mechanics and Mining Sciences 39(6):
789-800.
Gu, X.F., Seidel, J.P. & Haberfield, C.M. 2003. Direct shear test of
sandstone-concrete joints. International
Journal of Geomechanics 3(1): 21-33.
Hazzard, J.F., Collins, D.S.,
Pettitt, W.S. & Young, R.P. 2002. Simulation of unstable fault slip in
granite using a bonded-particle model. Pure
and Applied Geophysics 159(1): 221-245.
He, J., Pasternak, E. & Dyskin, A. 2019. Bridges outside fracture process zone:
Their existence and effect. Engineering
Fracture Mechanics 225: 106453.
Khazaei,
C., Hazzard, J. & Chalaturnyk, R. 2015. Damage
quantification of intact rocks using acoustic emission energies recorded during
uniaxial compression test and discrete element modeling. Computers and Geotechnics 67: 94-102.
Liu, Z., Jia, J.S., Feng, W, Ma,
F. & Zheng, C. 2017. Shear strength of cemented sand gravel and rock
materials. Sains Malaysiana 46(11): 2101-2108.
Liu, X.R., Kou, M.M., Lu, Y.M.
& Liu, Y.Q. 2018. An experimental investigation on the shear mechanism of
fatigue damage in rock joints under pre-peak cyclic loading condition. International Journal of Fatigue 106:
175-184.
Meier, T., Rybacki,
E., Backers, T. & Dresen, G. 2015. Influence of
bedding angle on borehole stability: A laboratory investigation of transverse
isotropic oil shale. Rock Mechanics and
Rock Engineering 48(4): 1535-1546.
Mpalaskas, A.C., Matilzas, T.E., Van Hemelrijck,
D., Papakitsos, G.S. & Aggelis,
D.G. 2016. Acoustic emission monitoring of granite under bending and shear
loading. Archives of Civil and Mechanical
Engineering 16: 313-324.
Muralha,
J., Grasselli, G., Tatone,
B., Blümel, M., Chryssanthakis,
P. & Yujing, J. 2014. ISRM suggested method for
laboratory determination of the shear strength of rock joints: Revised version. Rock Mechanics and Rock Engineering 47: 291-302.
Oh, J. & Kim, G.W. 2010.
Effect of opening on the shear behavior of a rock joint. Bulletin of Engineering Geology and the Environment 69(3): 389-395.
Park, J.W. & Song, J.J.
2009. Numerical simulation of a direct shear test on a rock joint using a
bonded-particle model. International
Journal of Rock Mechanics and Mining Sciences 46(8): 1315-1328.
Patton, F.D. 1966. Multiple
modes of shear failure in rock. In Proceedings
of the 1st Congress on International Society for Rock Mechanics Lisbon, Portugal. pp. 509-513.
Rafek,
A.G. & Goh, T.L. 2014. Correlation of joint roughness coefficient (JRC) and
peak friction angles of discontinuities of Malaysian schists. Sains Malaysiana 43(5): 751-756.
Rafek, A.G., Ong, B.C. & Goh, T.L. 2019. Geomechanical characterisation of rock mass and slope stability analysis
at Laman Granview, Saujana Puchong, Selangor, Malaysia. Sains Malaysiana 48(4): 757-763.
Serasa,
A.S., Lai, G.T., Rafek, A.G., Hussin,
A., Khai Ern, L. & Mohamed, T.R. 2017. Peak
friction angle estimation from joint roughness coefficient of discontinuities
of limestone in Peninsular Malaysia. Sains Malaysiana 46(2): 181-188.
Shrivastava, A.K. & Rao,
K.S. 2018. Physical modeling of shear behavior of infilled rock joints under
CNL and CNS boundary conditions. Rock
Mechanics and Rock Engineering 51(1): 101-118.
Wang, G., Zhang, Y., Jiang, Y.,
Liu, P., Guo, Y., Liu, J., Ma, M., Wang, K. & Wang, S. 2018. Shear behaviour and acoustic emission characteristics of bolted
rock joints with different roughnesses. Rock Mechanics and Rock Engineering 51(6): 1885-1906.
Zhang, X., Lu, Y., Tang, J.,
Zhou, Z. & Liao, Y. 2017. Experimental study on fracture initiation and
propagation in shale using supercritical carbon dioxide fracturing. Fuel 190: 370-378.
Zhou, X.P., Zhang, J.Z. &
Wong, L.N.Y. 2018. Experimental study on the growth, coalescence and wrapping
behaviors of 3D cross-embedded flaws under uniaxial compression. Rock Mechanics and Rock Engineering 51(5): 1379-1400.
*Corresponding
author; email: xieqiang2000@163.com
|