Sains Malaysiana 50(2)(2021): 449-460

http://dx.doi.org/10.17576/jsm-2021-5002-16

 

Polarity Difference and the Presence of Phytoestrogen Compounds Affecting Estrogenic Activity of Peperomia pellucida Extracts

(Perbezaan Kekutuban dan Kehadiran Sebatian Fitoestrogen yang Mempengaruhi Aktiviti Estrogen Ekstrak Peperomia pellucida)

 

I GUSTI AGUNG AYU KARTIKA1, MUHAMAD INSANU1, CATUR RIANI1, KYU HYUCK CHUNG2, I KETUT ADNYANA1*

 

1School of Pharmacy, Bandung Institute of Technology, 40132, Bandung, Indonesia

 

2School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea

 

Received: 16 November 2019/Accepted: 6 July 2020

 

ABSTRACT

Peperomia pellucida (L.) Kunth has been studied as an anti-osteoporotic agent. However, there is no report about its estrogenic activity, which is important for its anti-osteoporotic activity. Thus, the aim of this research was to study the estrogenic potency of P. pellucida extract. The estrogenic activity of P. pellucida extracts (n-hexane, ethyl acetate, ethanol, and water extracts) was studied using E-screen assay and confirmed with a molecular docking simulations. Further, the presence of phytoestrogen compounds was identified using thin layer chromatography (TLC), TLC densitometry, and high-performance liquid chromatography. The n-hexane, ethyl acetate, and ethanol extracts at a concentration of 0.1 µg mL-1 exhibited a partial agonist effect, whereas the water extract showed full agonist effect at the similar concentration. This activity was produced through a classical ligand-dependent mechanism similar to estradiol. All of the extracts also showed antiestrogenic activity. The TLC chromatogram evidently depicted the presence of quercetin and stigmasterol in the n-hexane and ethyl acetate extracts. Apigenin and apigetrin at concentrations of 0.239±0.076 and 1.063±0.156 µg mg-1 extract, respectively, were present in the water extract. A docking study on estrogen receptors confirmed that apigetrin prefer to produce estrogenic activity, whereas the other compounds can produce both estrogenic and antiestrogenic activity. Hence, we suggest that the bioactive compounds in the water extract are flavonoids, such as apigenin and apigetrin. In summary, the water extract is recommended to be used as an estrogenic agent.

 

Keywords: Apigenin; apigetrin; docking; estrogenic; extract; Peperomia pellucida

 

ABSTRAK

Peperomia pellucida (L.) Kunth telah dikaji sebagai agen anti-osteoporosis. Walau bagaimanapun, tiada laporan mengenai aktiviti estrogennya yang penting untuk aktiviti anti-osteoporosisnya. Oleh itu, tujuan penyelidikan ini adalah untuk mengkaji potensi estrogen ekstrak P. pellucida. Aktiviti estrogen ekstrak P. pellucida (n-heksana, etil asetat, etanol dan ekstrak air) telah dikaji dengan menggunakan ujian E-screen dan disahkan dengan simulasi dok pengimejan. Selanjutnya, sebatian fitoestrogen telah dikenal pasti menggunakan kromatografi lapisan tipis (KLT), KLT densitometri dan kromatografi cecair prestasi tinggi. Ekstrak n-heksana, etil asetat dan etanol pada kepekatan 0.1 μg mL-1 menunjukkan kesan agonis separa, manakala ekstrak air menunjukkan kesan agonis penuh pada kepekatan yang sama. Aktiviti ini dihasilkan melalui mekanisme ligan klasik yang sama seperti estradiol. Semua ekstrak juga menunjukkan aktiviti antiestrogenik. Kromatogram KLT jelas menggambarkan kehadiran quersetin dan stigmasterol dalam ekstrak n-heksana dan etil asetat. Apigenin dan apigetrin masing-masing pada kepekatan 0.239±0.076 dan 1.063±0.156 μg mg-1 ekstrak, hadir dalam ekstrak air. Kajian dok mengenai reseptor estrogen mengesahkan bahawa apigenin dan apigetrin lebih suka menghasilkan aktiviti estrogenik, sedangkan quersetin dan stigmasterol dapat menghasilkan kedua-dua aktiviti estrogenik dan antiestrogenik. Oleh itu, kami mencadangkan bahawa sebatian bioaktif dalam ekstrak air adalah flavonoid, seperti apigenin dan apigetrin. Ringkasnya, ekstrak air disyorkan untuk digunakan sebagai agen estrogen.

 

Kata kunci: Apigenin; apigetrin; dok; ekstrak; estrogen; Peperomia pellucida

 

REFERENCES

Baker, V.A., Hepburn, P.A., Kennedy, S.J., Jones, P.A., Lea, L.J., Sumpter, J.P. & Ashby, J. 1999. Safety evaluation of phytosterol esters part 1 assessment of oestrogenicity using a combination of in vivo and in vitro assays. Food and Chemical Toxicology 37(1): 13-22.

Berry, M., Metzger, D. & Chambon, P. 1990. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO Journal 9: 2811-2818.

Burns, K.A. & Korach, K.S. 2012. Estrogen receptors and human disease: An update. Archives of Toxicology 86(10): 1491-1504.

Creusot, N., Budzinski, H., Balaguer, P., Kinani, S., Porcher, J.M. & Aït-Aïssa, S. 2013. Effect-directed analysis of endocrine-disrupting compounds in multi-contaminated sediment: Identification of novel ligands of estrogen and pregnane X receptors. Analytical and Bioanalytical Chemistry 405(8): 2553-2566.

Dauvois, S., White, R. & Parker, M.G. 1993. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. Journal of Cell Science 106(4): 1377-1388.

Gabay, O., Sanchez, C., Salvat, C., Chevy, F., Breton, M., Nourissat, G., Wolf, C., Jacques, C. & Berenbaum, F. 2010. Stigmasterol: A phytosterol with potential anti-osteoarthritic properties. Osteoarthritis and Cartilage 18(1): 106-116.

Goto, T., Hagiwara, K., Shirai, N., Yoshida, K. & Hagiwara, H. 2015. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology 67(2): 357-365.

Gutendorf, B. & Westendorf, J. 2001. Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology 166(1-2): 79-89.

Hall, J.M., Couse, J.F. & Korach, K.S. 2001. The multifaceted mechanisms of estradiol and estrogen receptor signaling. Journal of Biological Chemistry 276(40): 36869-36872.

Han, D.H., Denison, M.S., Tachibana, H. & Yamada, K. 2002. Relationship between estrogen receptor-binding and estrogenic activities of environmental estrogens and suppression by flavonoids. Bioscience, Biotechnology, and Biochemistry 66(7): 1479-1487.

Harborne, A.J. 1998. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. 3rd ed. Netherlands: Springer Science & Business Media. pp. 16-29.

Hartati, S., Angelina, M., Dewiyanti, I. & Meilawati, L. 2015. Isolation and characterization compounds from hexane and ethyl acetate fractions of Peperomia pellucida L. Journal of Tropical Life Science 5(3): 117-122.

Ju, Y.H., Clausen, L.M., Allred, K.F., Almada, A.L. & Helferich, W.G. 2004. Beta-sitosterol, beta-sitosterol glucoside, and a mixture of beta-sitosterol and beta-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells in vitro and in ovariectomized athymic mice. The Journal of Nutrition 134(5): 1145-1151.

Kartika, I.G.A.A., Riani, C., Insanu, M., Eljabbar, L.F.D. & Adnyana, I.K. 2018. Sasaladaan (Peperomia pellucida [L.] Kunth.) extracts improve trabecular bone microarchitecture in ovariectomy-induced osteoporotic rats. International Journal of Green Pharmacy (IJGP) 12(04): 1-6.

Khalid, A.B. & Krum, S.A. 2016. Estrogen receptors alpha and beta in bone. Bone 87: 130-135.

Khan, F., Peter, X.K., Mackenzie, R.M., Katsoulis, L., Gehring, R., Munro, O.Q., van Heerden, F.R. & Drewes, S.E. 2004. Venusol from Gunnera perpensa: Structural and activity studies. Phytochemistry 65(8): 1117-1121.

Kim, D.H., Moon, Y.S., Park, T.S. & Son, J.H. 2015a. Serotonins of safflower seeds play a key role in anti-inflammatory effect in lipopolysaccharide-stimulated RAW 264.7 macrophages. Journal of Plant Biotechnology 42(4): 364-369.

Kim, H.R., Lee, J.E., Jeong, M.H., Choi, S.J., Lee, K. & Chung, KH. 2015b. Comparative evaluation of the mutagenicity and genotoxicity of smoke condensate derived from Korean cigarettes. Environmental Health and Toxicology 30: e2015014.

Kühnau, J. 1976. The flavonoids. A class of semi-essential food components: Their role in human nutrition. World Review of Nutrition and Dietetics 24: 117‐191.

Kuiper, G.G.J.M., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., Saag, P.T., Burg, B. & Gustafsson, Å. 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139(10): 4252-4263.

Kurniawan, A., Saputri, F., Rissyelly, Ahmad, I. & Mun’im, A. 2016. Isolation of angiotensin converting enzyme (ACE) inhibitory activity quercetin from Peperomia pellucida. International Journal of PharmTech Research 9(7): 115-121.

Lecomte, S., Demay, F., Ferrière, F. & Pakdel, F. 2017. Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects? International Journal of Molecular Sciences 18(7): 1380-1400.

MacGregor, J.I. & Jordan, V.C. 1998. Basic guide to the mechanisms of antiestrogen action. Pharmacological Reviews 50(2): 151-196.

Mariotti, K.C., Schmitt, G.C., Barreto, F., Fortunato, R.E., Singer, R.B., Dallegrave, E., Leal, M.B. & Limberger, R.P. 2011. Evaluation of anti-estrogenic or estrogenic activities of aqueous root extracts of Gunnera manicata L. Brazilian Journal of Pharmaceutical Sciences 47(3): 601-604.

Miodini, P., Fioravanti, L., Fronzo, G.D. & Cappelletti, V. 1999. The two phyto-oestrogens genistein and quercetin exert different effects on oestrogen receptor function. British Journal of Cancer 80(8): 1150-1155.

Mostrom, M. & Tim, J.E. 2018. Phytoestrogens - An overview. ScienceDirect topics. 2018. https://www.sciencedirect.com/topics/agricultural-and-biological sciences/phytoestrogens. Accessed on 21 August 2018.

Nelson, A.W., Tilley, W.D., Neal, D.E. & Carroll, J.S. 2014. Estrogen receptor beta in prostate cancer: Friend or foe? Endocrine-Related Cancer 21(4): T219-T234.

Ngueguim, F.T., Khan, M.P., Donfack, J.H., Tewari, D., Dimo, T., Kamtchouing, P., Maurya, R. & Chattopadhyay, N. 2013. Ethanol extract of Peperomia pellucida (Piperaceae) promotes fracture healing by anabolic effect on osteoblasts. Journal of Ethnopharmacology 148(1): 62-68.

Florence, N.T., Huguette, S.T.S., Hubert, D.J., Raceline, G.K., Desire, D.D.P., Pierre, K. & Theophile, D. 2017. Aqueous extract of Peperomia pellucida (L.) HBK accelerates fracture healing in Wistar rats. BMC Complementary and Alternative Medicine 17(1): 188-196.

Oh, S.M., Ryu, B.T. & Chung, K.H. 2008. Identification of estrogenic and antiestrogenic activities of respirable diesel exhaust particles by bioassay-directed fractionation. Archives of Pharmacal Research 31(1): 75-82.

Oršolić, N., Jeleč, Z., Nemrava, J., Balta, V., Gregorović, G. & Jeleč, D. 2018. Effect of quercetin on bone mineral status and markers of bone turnover in retinoic acid-induced osteoporosis. Polish Journal of Food and Nutrition Sciences 68(2): 149-162.

Peng, J., Sengupta, S. & Jordan, V.C. 2009. Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anti-Cancer Agents in Medicinal Chemistry 9(5): 481-499.

Perez, P., Pulgar, R., Olea-Serrano, F., Villalobos, M., Rivas, A., Metzler, M., Pedraza, V. & Olea, N. 1998. The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environmental Health Perspectives 106(3): 167-174.

Powell, E., Shanle, E., Brinkman, A., Li, J., Keles, S., Wisinski, K.B., Huang, W. & Xu, W. 2012. Identification of estrogen receptor dimer selective ligands reveals growth-inhibitory effects on cells that co-express ERα and ERβ. PLoS ONE 7(2): e30993.

Powers, C.N. & Setzer, W.N. 2015. A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements. In Silico Pharmacology 3(4): 1-63.

Putri, C.A., Kartika, I.G.A.A. & Adnyana, I.K. 2016. Preventive effect of Peperomia pellucida (L.) Kunth herbs on ovariectomy-induced osteoporotic rats. Journal of Chinese Pharmaceutical Sciences 25(7): 546-551.

Resende, F.A., de Oliveira, A.P.S., de Camargo, M.S., Vilegas, W. & Varanda, E.A. 2013. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay. PLoS ONE 8(10): e74881.

Riggs, B.L. 2000. The mechanisms of estrogen regulation of bone resorption. The Journal of Clinical Investigation 106(10): 1203-1204.

Sakamoto, T., Horiguchi, H., Oguma, E. & Kayama, F. 2010. Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. The Journal of Nutritional Biochemistry 21(9): 856-864.

Shang, Y. & Brown, M. 2002. Molecular determinants for the tissue specificity of SERMs. Science 295(5564): 2465-2468.

Singh, B., Mense, S.M., Bhat, N.K., Putty, S., Guthiel, W.A., Remotti, F. & Bhat, H.K. 2010. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats. Toxicology and Applied Pharmacology 247(2): 83-90.

Triutomo, D.H., Miranda, A., Tamba, L.J. & Lukitaningsih, E. 2016. Estrogenic effect ethanol extract corn silk (stigma maydis) on bone density and histology femur profiles in ovariectomized rats female sprague dawley strain. Indonesian Journal of Cancer Chemoprevention 7(3): 104-109.

Williams, C., Edvardsson, K., Lewandowski, S.A., Ström, A. & Gustafsson, J.A. 2008. A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27(7): 1019-1032.

Xu, S., Li, N., Ning, M.M., Zhou, C.H., Yang, Q.R. & Wang, M.W. 2006. Bioactive compounds from Peperomia pellucida. Journal of Natural Products 69(2): 247-250.

Yaşar, P., Ayaz, G., User, S.D., Güpür, G. & Muyan, M. 2016. Molecular mechanism of estrogen-estrogen receptor signaling. Reproductive Medicine and Biology 16(1): 4-20.

 

*Corresponding authors; email: ketut@fa.itb.ac.id

   

 

 

 

previous