Sains Malaysiana 50(2)(2021): 549-557
http://dx.doi.org/10.17576/jsm-2021-5002-25
On Diameter of Subgraphs of
Commuting Graph in Symplectic Group for Elements of
Order Three
(Diameter Subgraf bagi Graf Kalis Tukar Tertib dalam Kumpulan Simplektik bagi Unsur Berperingkat Tiga)
SUZILA
MOHD KASIM1 & ATHIRAH NAWAWI1,2*
1Institute for Mathematical Researc, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Mathematics, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
Received:
1 April 2020/Accepted: 4 August 2020
ABSTRACT
Suppose
be a finite group and
be a subset of
. The commuting graph, denoted by
, is a simple undirected graph,
where
being the set of vertex and two distinct
vertices
are joined by an edge if and only if
. The aim of this paper was to
describe the structure of disconnected commuting graph by considering a symplectic group and a conjugacy class of elements of order
three. The main work was to discover the disc structure and the diameter of the
subgraph as well as the suborbits of symplectic groups
,
and
.
Additionally, two mathematical formulas are derived and proved, one gives the
number of subgraphs based on the size of each subgraph and the size of the
conjugacy class, whilst the other one gives the size of disc relying on the
number and size of suborbits in each disc.
Keywords: Commuting graph; conjugacy class;
disconnected graph; symplectic group
ABSTRAK
Andaikan
adalah satu kumpulan terhingga dan
adalah satu subset bagi
. Graf
kalis tukar tertib, ditatatandakan dengan
adalah graf mudah tidak terarah, yang
menjadi set bucu dan dua bucu berbeza
disambungkan oleh satu garisbucu jika dan hanya jika
. Tujuan makalah ini adalah untuk
memperincikan struktur graf kalis tukar tertib tidak berkait dengan
mempertimbangkan kumpulan simplektik dan kelas konjugasi dengan unsur
berperingkat tiga. Kerja utama adalah untuk memperoleh struktur cakera dan diameter subgraf tersebut juga suborbit bagi kumpulan simplektik
,
dan
. Di samping itu, dua formula matematik diterbitkan dan dibuktikan, satu daripadanya memberikan bilangan subgraf berdasarkan kepada saiz setiap subgraf dan saiz kelas konjugasi, manakala yang satu lagi memberikan saiz cakera bergantung pada bilangan dan saiz suborbit dalam setiap cakera.
Kata kunci: Graf kalis tukar tertib; graf tidak berkait; kelas konjugasi; kumpulan simplektik
REFERENCES
Abd Ghafur Bin Ahmad & Yousof Gheisari. 2012. Components in graphs of diagram groups over the union of two
semigroup presentations of integers. Sains Malaysiana 41(1): 129-131.
Bates, C., Bundy, D., Hart, S.
& Rowley, P. 2007. Commuting involution graphs for sporadic simple groups. J. Algebra 316(2):
849-868.
Bates, C., Bundy, D., Perkins, S.
& Rowley, P. 2004. Commuting involution graphs in special linear groups. Comm. Algebra 32(11):
4179-4196.
Bates, C., Bundy, D., Perkins, S.
& Rowley, P. 2003a. Commuting involution graphs for symmetric groups. J.
Algebra 266(1):
133-153.
Bates, C., Bundy, D., Perkins, S.
& Rowley, P. 2003b. Commuting involution graphs in finite Coxeter groups. J.
Group Theory 6(4): 461-476.
Betten, A., Kohnert,
A., Laue, R. & Wassermann, A. 2001. Algebraic combinatorics and
applications. In The Energy of a Graph: Old and New Results, edited by
Gutman, I. Berlin, Heidelberg: Springer. pp. 196-211.
Bosma,
W., Cannon, J.J. & Playoust, C. 1997. The magma
algebra system I: The user language. J.
Symbolic Comput. 24(3-4): 235-265.
Brauer, R. & Fowler, K.A. 1955. On groups of even order. Ann. of
Math. 62(3): 565-583.
Fischer,
B. 1971. Finite groups generated by 3-transpositions. I Invent. Math. 13(3):
232-246.
Loh,
S.L., Salleh, S. & Sarmin, N.H. 2014. Linear-time heuristic
partitioning technique for mapping of connected graphs into single-row
networks. Sains Malaysiana 43(8): 1263-1269.
Malik, D.S., Sen, M.K. & Ghosh,
S. 2014. Introduction to
Graph Theory. Singapore:
Cengage Learning Asia Pte Ltd.
Nawawi,
A. 2013. Commuting graphs for elements of order three in finite groups. University
of Manchester. Ph.D. Thesis (Unpublished).
Nawawi,
A. & Rowley, P. 2015. On commuting graphs for elements of order 3 in
symmetric groups. Elec. J. Comb. 22(1):
P1.21.
Nawawi, A., Husain, S.K.S. & Ariffin,
M.R.K. 2019. Commuting graphs, C(G, X) in symmetric
groups Sym(n) and its connectivity. Symmetry 11(9): 1178.
Wang,
Y-F. & Ma, N. 2016. Orderings a class of unicyclic graphs with respect to hosoya and merrifield-simmons index. Sains Malaysiana 45(1): 55-58.
Wilson, R.A. 2009. Graduate
Texts in Mathematics: The Finite Simple Groups.
London, England: Springer-Verlag. pp. 41-110.
Wilson,
R.A., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson,
S., Linton, S., Bray, J. & Abbott, R. 2017.
http://brauer.maths.qmul.ac.uk/Atlas/v3/. World-wide-web atlas of finite group
representations.
*Corresponding author; email: athirah@upm.edu.my
|