Sains Malaysiana 50(3)(2021): 571-593

http://doi.org/10.17576/jsm-2021-5003-02

 

Seasonal Effects on Spatial Variations of Surface Water Quality in a Tropical River Receiving Anthropogenic Influences

(Kesan Bermusim ke atas Variasi Ruang Kualiti Permukaan Air di Sungai Tropika yang Menerima Pengaruh Antropogen)

 

TENGKU NILAM BAIZURA TENGKU IBRAHIM1,2, FARIDAH OTHMAN3*, NOOR ZALINA MAHMOOD1 & TAHER ABUNAMA3,4

 

1Department of Environmental Management, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Jln SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor Darul Ehsan, Malaysia

 

3Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

4Institute of Water and Wastewater Technology, Durban University of Technology, Musgrave, Berea, South Africa

 

Received: 30 December 2019/Accepted: 8 August 2020

 

ABSTRACT

This study investigates the seasonal and spatial water quality patterns along a tropical river that continuously receives various pollution sources. Multivariate analysis was used to study the spatial and temporal variations of the water quality parameters and to determine the origin of the pollution sources. Three regions (low, moderate, and high pollution levels) were determined based on cluster analysis. The stepwise DA mode proposed six parameters (pH, EC, COD, NO3, TC, and Fe) with 75% correct assignations as the most significant water quality parameters to present the spatial variations. In the temporal discrimination, forward stepwise mode analysis showed eight parameters (EC, TUR, BOD, COD, AN, NO3, Cu, and Cr) with 92% correct assignations, while five parameters (EC, AN, Al, Cu, and Cr) affording 89% correct assignations in backward stepwise mode analysis. Principal component analysis and factor analysis were used to investigate the origins of each water quality parameter based on the three clustered regions and successfully yielded eight latent factors loadings for each period that significantly identified the pollution sources and types along the river. The pollution sources for moderate and high pollution level areas are anthropogenic sources (landfill, industrial activities, and sewage discharge). Agricultural runoff is the main pollution source for the low pollution level areas. This study has shown classifications of river water quality based on seasonal and spatial criteria.

 

Keywords: Multivariate analysis; pollutants; spatial and seasonal variation; water quality

 

ABSTRAK

Penyelidikan ini mengkaji corak kualiti air bermusim dan ruang di sepanjang sungai tropika menerima pelbagai sumber pencemaran. Analisis multivariat digunakan untuk mengkaji variasi ruang dan temporal parameter kualiti air dan mengenal pasti sumber pencemaran. Tiga kumpulan (tahap pencemaran rendah, sederhana dan tinggi) ditentukan berdasarkan analisis kelompok. Mod DA langkah demi langkah mencadangkan enam parameter (pH, EC, COD, NO3, TC dan Fe) dengan 75% penetapan yang betul sebagai parameter kualiti air yang paling signifikan untuk menunjukkan variasi ruang. Dalam diskriminasi temporal, analisis mod bertahap maju menunjukkan lapan parameter (EC, TUR, BOD, COD, AN, NO3, Cu dan Cr) dengan 92% penetapan yang betul, sementara lima parameter (EC, AN, Al, Cu dan Cr) memberikan 89% penugasan yang betul dalam analisis mod bertahap mundur. Analisis komponen utama dan analisis faktor digunakan untuk mengkaji asal-usul setiap parameter kualiti air berdasarkan ketiga-tiga kelompok. Sumber pencemaran untuk kawasan paras pencemaran yang sederhana dan tinggi adalah sumber antropogen (tapak pelupusan, aktiviti industri, pelepasan kumbahan). Larian air pertanian adalah sumber pencemaran utama bagi kawasan paras pencemaran yang rendah. Kajian ini telah mendedahkan pengelasan kualiti air sungai berdasarkan kriteria bermusim dan ruang.

 

Kata kunci: Analisis multivariat; bahan cemar; kualiti air; variasi ruang dan bermusim

 

REFERENCES

Abunama, T., Othman, F., Ansari, M. & El-Shafie, A. 2019. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Environmental Science and Pollution Research 26(4): 3368-3381.

Abunama, T., Othman, F. & Younes, M.K. 2018. Predicting sanitary landfill leachate generation in humid regions using ANFIS modeling. Environmental Monitoring and Assessment 190(10): 597.

Ahmed, M.F., Mokhtar, M., Alam, L., Ta, G.C., Ern, L.K. & Khalid, R.M. 2018. Recognition of local authority for better management of drinking water at the Langat River Basin, Malaysia. International Journal of Engineering & Technology 7(3.30): 148-154.

Alssgeer, H.M.A., Gasim, M.B., Hanafiah, M.M., Abdulhadi, E.R.A. & Azid, A. 2018. GIS-based analysis of water quality deterioration in the Nerus River, Kuala Terengganu, Malaysia. Desalination and Water Treat 112: 334-343.

APHA. 1988. Standard Methods for Examination of Water and Waste Water. 17th ed. Washington DC: American Public Health Association.

Barakat, A., El Baghdadi, M., Rais, J., Aghezzaf, B. & Slassi, M. 2016. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. International Soil and Water Conservation Research 4(4): 284-292.

Bian, Z., Liu, L. & Ding, S. 2019. Correlation between spatial-temporal variation in landscape patterns and surface water quality: A case study in the Yi River Watershed, China. Applied Sciences 9(6): 1053.

Cano-Rocabayera, O., de Sostoa, A., Padros, F., Cardenas, L. & Maceda-Veiga, A. 2019. Ecologically relevant biomarkers reveal that chronic effects of nitrate depend on sex and life stage in the invasive fish Gambusia holbrooki. PloS ONE 14(1): e0211389.

Chatanga, P., Ntuli, V., Mugomeri, E., Keketsi, T. & Chikowore, N.V. 2019. Situational analysis of physico-chemical, biochemical and microbiological quality of water along Mohokare River, Lesotho. The Egyptian Journal of Aquatic Research 45(1): 45-51.

Corsino, S.F., Capodici, M., Di Trapani, D., Torregrossa, M. & Viviani, G. 2020. Assessment of landfill leachate biodegradability and treatability by means of allochthonous and autochthonous biomasses. New Biotechnology 55: 91-97.

Cunha, D.G.F., Sabogal-Paz, L.P. & Dodds, W.K. 2016. Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecological Engineering 94: 516-524.

Department of Environmental. 2017. Environmental Quality Report.

Department of Environmental. 2015. Environmental Quality Report.

Dobsa, J., Meznaric, V., Tompic, T., Legen, S. & Zeman, S. 2014. Evaluation of spatial and temporal variation in water contamination along Croation Highways by multivariate exploratory analysis. Water Air Soil Pollution 186(10): 6867-6878.

Ebrahimi, M., Gerber, E.L. & Rockaway, T.D. 2017. Temporal performance assessment of wastewater treatment plants by using multivariate statistical analysis. Journal of Environmental Management 193: 234-246.

Edokpayi, J., Odiyo, J., Popoola, O. & Msagati, T. 2016. Assessment of trace metals contamination of surface water and sediment: A case study of Mvudi River, South Africa. Sustainability 8(2): 135.

Elfithri, R., Toriman, M.E., Mokhtar, M.B. & Juahir, H. 2011. Perspectives and initiatives on integrated river basin management in Malaysia: A review. The Social Sciences 6(2): 169-176.

Elias, M.S., Ibrahim, S., Samuding, K., Ab Rahman, S., Wo, Y.M. & Daung, J.A.D. 2018. Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia. Environmental Monitoring and Assessment 190(4): 257.

Garson, G.D. 2012. Testing Statistical Assumptions. Asheboro, NC: Statistical Associates Publishing.

Georgieva, N., Yaneva, Z. & Kostadinova, G. 2013. Analyses and assessment of the spatial and temporal distribution of nitrogen compounds in surface waters. Water and Environment Journal 27(2): 187-196.

Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E. & Tatham, R.L. 1998. Multivariate Data Analysis. Volume 5. Upper Saddle River, NJ: Prentice Hall. pp. 207-219.

Hajigholizadeh, M. & Melesse, A.M. 2017. Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. Catena 151: 247-258.

Horn, A.H., Torres, I.C., Ribeiro, E.V. & Junior, A.P.M. 2017. Relationship between metal water concentration and anthropogenic pressures in a Tropical Watershed, Brazil. Geochimica Brasiliensis 30(2): 158.

Idris, A.B., Mamun, A.A., Amin, M., Soom, M., Noor, W. & Azmin, W. 2003. Review of water quality standards and practices in Malaysia. Pollution Research 22(2): 145-155.

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 7(2): 60-72.

Le, T.T.H., Zeunert, S., Lorenz, M. & Meon, G. 2017. Multivariate statistical assessment of a polluted river under nitrification inhibition in the tropics. Environmental Science and Pollution Research 24(15): 13845-13862.

Liu, D. & Zou, Z. 2012. Water quality evaluation based on improved fuzzy matter-element method. Journal of Environmental Sciences 24(7): 1210-1216.

Matta, G. 2015. Evaluation and prediction of deviation in physic-chemical characteristics of River Ganga. International Journal of Advancements in Research and Technology 4(6): 14-30.

Mavukkandy, M.O., Karmakar, S. & Harikumar, P. S. 2014. Assessment and rationalization of water quality monitoring network: A multivariate statistical approach to the Kabbini River (India). Environmental Science and Pollution Research 21(17): 10045-10066.

McKinley, K., McLellan, I., Gagné, F. & Quinn, B. 2019. The toxicity of potentially toxic elements (Cu, Fe, Mn, Zn and Ni) to the cnidarian Hydra attenuata at environmentally relevant concentrations. Science of the Total Environment 665: 848-854.

Mousa, I.E., Emara, I.K., Farfour, S.A. & Eldourghamy, A.S. 2018. Microbial profile and its changing rates of Lake Burullus, Egypt as wastewater receiving body. Water and Environment Journal 32(1): 67-74.

Ogwueleka, T.C. 2014. Assessment of the water quality and identification of pollution sources of Kaduna River in Niger State (Nigeria) using exploratory data analysis. Water and Environment Journal 28(1): 31-37.

Ojok, W., Wasswa, J. & Ntambi, E. 2017. Assessment of seasonal variation in water quality in River Rwizi using multivariate statistical techniques, Mbarara Municipality. Uganda. Journal Water Resource Protection 9(1): 83-97.

Othman, F., Alaa Eldin, M.E. & Mohamed, I. 2012. Trend analysis of a tropical urban river water quality in Malaysia. Journal of Environmental Monitoring 14: 3164.

Psaltopoulos, D., Wade, A.J., Skuras, D., Kernan, M., Tyllianakis, E. & Erlandsson, M. 2017. False positive and false negative errors in the design and implementation of agri-environmental policies: A case study on water quality and agricultural nutrients. Science of The Total Environment 575: 1087-1099.

Sarkar, S.K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P. & Bhattacharya, B. 2007. Water quality management in the lower stratch of the River Ganges, East Coast of India: An approach through environmental education. Journal of Cleaner Production 15: 1559-1567.

Stevenson, R.J. & Rollins, S.L. 2017. Ecological assessment with benthic algae. In Methods in Stream Ecology. New York: Academic Press. pp. 277-292.

Stefania, B., Calabrò, P.S., Rosa, G. & Moraci, N. 2018. Selective removal of heavy metals from landfill leachate by reactive granular filters. Science of The Total Environment 644: 335-341.

USEPA. 2001. Parameters of Water Quality: Interpretation and Standards. Environmental Protection Agency. Johnstown Castle, Co. Wexford, Ireland.

Van Ael, E., Belpaire, C., Breine, J., Geeraerts, C., Van Thuyne, G., Eulaers, I. & Bervoets, L. 2014. Are persistent organic pollutants and metals in eel muscle predictive for the ecological water quality? Environmental Pollution 186: 165-171.

VishnuRadhan, R., Zainudin, Z., Sreekanth, G.B., Dhiman, R., Salleh, M.N. & Vethamony, P. 2017. Temporal water quality response in an urban river: A case study in Peninsular Malaysia. Applied Water Science 7(2): 923-933.

Voyles, J., Vredenburg, V.T., Tunstall, T.S., Parker, J.M., Briggs, C.J. & Rosenblum, E.B. 2012. Pathophysiology in mountain yellow-legged frogs (Rana muscosa) during a chytridiomycosis outbreak. PLoS ONE 7(4): 353-374.

Wang, Z., Meador, J.P. & Leung, K.M. 2016. Metal toxicity to freshwater organisms as a function of pH: A meta-analysis. Chemosphere 144: 1544-1552.

Wu, Z., Wang, X., Chen, Y., Cai, Y. & Deng, J. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of The Total Environment 612: 914-922.

Yan, J., Xu, Z., Yu, Y., Xu, H. & Gao, K. 2019. Application of a hybrid optimized BP network model to estimate water quality parameters of Beihai Lake in Beijing. Applied Sciences 9(9): 1863.

Zhang, L., Zou, Z. & Shan, W. 2017. Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China. Journal of Environmental Sciences 56: 240-246.

Zhang, Y., Xu, M., Li, X., Qi, J., Zhang, Q., Guo, J., Yu, L. & Zhao, R. 2018. Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding County, Southwestern China. Water 10(1): 80.

 

*Corresponding author; email: faridahothman@um.edu.my

 

   

 

 

previous