Sains Malaysiana 50(3)(2021):
571-593
http://doi.org/10.17576/jsm-2021-5003-02
Seasonal Effects on Spatial Variations of
Surface Water Quality in a Tropical River Receiving Anthropogenic Influences
(Kesan Bermusim ke atas Variasi Ruang Kualiti Permukaan Air di Sungai Tropika yang Menerima Pengaruh Antropogen)
TENGKU NILAM BAIZURA TENGKU IBRAHIM1,2,
FARIDAH OTHMAN3*, NOOR ZALINA MAHMOOD1 & TAHER ABUNAMA3,4
1Department of Environmental
Management, Institute of Biological Sciences, Faculty of Science, University of
Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department of Environmental Health, Faculty of Health
Sciences, MAHSA University, Jln SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor Darul Ehsan, Malaysia
3Department of Civil Engineering, Faculty of Engineering,
University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
4Institute of Water and Wastewater Technology, Durban
University of Technology, Musgrave, Berea, South Africa
Received: 30 December 2019/Accepted: 8 August
2020
ABSTRACT
This study investigates the seasonal and spatial
water quality patterns along a tropical river that continuously receives
various pollution sources. Multivariate analysis was used to study the spatial
and temporal variations of the water quality parameters and to determine the
origin of the pollution sources. Three regions (low, moderate, and high
pollution levels) were determined based on cluster analysis. The stepwise DA
mode proposed six parameters (pH, EC, COD, NO3, TC, and Fe) with 75%
correct assignations as the most significant water quality parameters to
present the spatial variations. In the temporal discrimination, forward
stepwise mode analysis showed eight parameters (EC, TUR, BOD, COD, AN, NO3,
Cu, and Cr) with 92% correct assignations, while five parameters (EC, AN, Al,
Cu, and Cr) affording 89% correct assignations in backward stepwise mode
analysis. Principal component analysis and factor analysis were used to
investigate the origins of each water quality parameter based on the three
clustered regions and successfully yielded eight latent factors loadings for
each period that significantly identified the pollution sources and types along
the river. The pollution sources for moderate and high pollution level areas
are anthropogenic sources (landfill, industrial activities, and sewage
discharge). Agricultural runoff is the main pollution source for the low
pollution level areas. This study has shown classifications of river water
quality based on seasonal and spatial criteria.
Keywords: Multivariate analysis; pollutants;
spatial and seasonal variation; water quality
ABSTRAK
Penyelidikan ini mengkaji corak kualiti air bermusim dan ruang di sepanjang sungai tropika menerima pelbagai sumber pencemaran. Analisis multivariat digunakan untuk mengkaji variasi ruang dan temporal
parameter kualiti air dan mengenal pasti sumber pencemaran. Tiga kumpulan (tahap pencemaran rendah, sederhana dan tinggi) ditentukan berdasarkan analisis kelompok. Mod DA langkah demi langkah mencadangkan enam parameter (pH,
EC, COD, NO3, TC dan Fe) dengan 75% penetapan yang betul sebagai parameter kualiti air yang
paling signifikan untuk menunjukkan variasi ruang. Dalam diskriminasi temporal, analisis mod bertahap maju menunjukkan lapan parameter (EC, TUR, BOD, COD, AN, NO3, Cu
dan Cr) dengan 92% penetapan yang betul, sementara lima
parameter (EC, AN, Al, Cu dan Cr) memberikan 89% penugasan yang betul dalam analisis mod bertahap mundur. Analisis komponen utama dan analisis faktor digunakan untuk mengkaji asal-usul setiap parameter kualiti air berdasarkan ketiga-tiga kelompok. Sumber pencemaran untuk kawasan paras pencemaran yang sederhana dan tinggi adalah sumber antropogen (tapak pelupusan, aktiviti industri, pelepasan kumbahan). Larian air pertanian adalah sumber pencemaran utama bagi kawasan paras pencemaran yang rendah. Kajian ini telah mendedahkan pengelasan kualiti air sungai berdasarkan kriteria bermusim dan ruang.
Kata kunci: Analisis multivariat; bahan cemar; kualiti air; variasi ruang dan bermusim
REFERENCES
Abunama, T., Othman, F.,
Ansari, M. & El-Shafie, A. 2019. Leachate
generation rate modeling using artificial intelligence algorithms aided by
input optimization method for an MSW landfill. Environmental Science and Pollution Research 26(4): 3368-3381.
Abunama, T., Othman, F. &
Younes, M.K. 2018. Predicting sanitary landfill leachate generation in humid
regions using ANFIS modeling. Environmental
Monitoring and Assessment 190(10): 597.
Ahmed, M.F., Mokhtar, M., Alam,
L., Ta, G.C., Ern, L.K. & Khalid, R.M. 2018. Recognition of local authority
for better management of drinking water at the Langat River Basin, Malaysia. International Journal of Engineering &
Technology 7(3.30): 148-154.
Alssgeer, H.M.A., Gasim, M.B., Hanafiah, M.M., Abdulhadi, E.R.A. & Azid, A.
2018. GIS-based analysis of water quality deterioration in the Nerus River, Kuala Terengganu, Malaysia. Desalination and Water Treat 112: 334-343.
APHA. 1988. Standard
Methods for Examination of Water and Waste Water. 17th ed. Washington DC:
American Public Health Association.
Barakat, A., El Baghdadi, M., Rais, J., Aghezzaf, B. & Slassi, M. 2016. Assessment of spatial and seasonal water
quality variation of Oum Er Rbia River (Morocco) using multivariate statistical
techniques. International Soil and Water
Conservation Research 4(4): 284-292.
Bian, Z., Liu, L. &
Ding, S. 2019. Correlation between spatial-temporal variation in landscape
patterns and surface water quality: A case study in the Yi River Watershed,
China. Applied Sciences 9(6): 1053.
Cano-Rocabayera, O.,
de Sostoa, A., Padros, F.,
Cardenas, L. & Maceda-Veiga, A. 2019.
Ecologically relevant biomarkers reveal that chronic effects of nitrate depend
on sex and life stage in the invasive fish Gambusia holbrooki. PloS ONE 14(1): e0211389.
Chatanga, P., Ntuli, V., Mugomeri, E., Keketsi, T. & Chikowore, N.V.
2019. Situational analysis of physico-chemical,
biochemical and microbiological quality of water along Mohokare River, Lesotho. The Egyptian Journal of
Aquatic Research 45(1): 45-51.
Corsino, S.F., Capodici, M., Di Trapani, D., Torregrossa,
M. & Viviani, G. 2020. Assessment of landfill leachate biodegradability and
treatability by means of allochthonous and autochthonous biomasses. New Biotechnology 55: 91-97.
Cunha, D.G.F., Sabogal-Paz,
L.P. & Dodds, W.K. 2016. Land use influence on
raw surface water quality and treatment costs for drinking supply in São Paulo
State (Brazil). Ecological Engineering 94: 516-524.
Department of Environmental. 2017. Environmental
Quality Report.
Department of Environmental. 2015. Environmental
Quality Report.
Dobsa, J., Meznaric, V., Tompic, T., Legen, S. & Zeman, S. 2014. Evaluation of spatial and
temporal variation in water contamination along Croation Highways by multivariate exploratory analysis. Water Air Soil Pollution 186(10): 6867-6878.
Ebrahimi, M., Gerber, E.L. & Rockaway, T.D.
2017. Temporal performance assessment of wastewater treatment plants by using
multivariate statistical analysis. Journal
of Environmental Management 193: 234-246.
Edokpayi, J., Odiyo, J., Popoola, O. & Msagati,
T. 2016. Assessment of trace metals contamination of surface water and
sediment: A case study of Mvudi River, South Africa. Sustainability 8(2): 135.
Elfithri, R., Toriman, M.E., Mokhtar, M.B. & Juahir,
H. 2011. Perspectives and initiatives on integrated river basin management in
Malaysia: A review. The Social Sciences 6(2): 169-176.
Elias, M.S., Ibrahim, S., Samuding,
K., Ab Rahman, S., Wo, Y.M. & Daung, J.A.D. 2018.
Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia. Environmental
Monitoring and Assessment 190(4): 257.
Garson, G.D. 2012. Testing Statistical Assumptions. Asheboro, NC: Statistical
Associates Publishing.
Georgieva, N., Yaneva,
Z. & Kostadinova, G. 2013. Analyses and
assessment of the spatial and temporal distribution of nitrogen compounds in
surface waters. Water and Environment
Journal 27(2): 187-196.
Hair, J.F., Black, W.C., Babin,
B.J., Anderson, R.E. & Tatham, R.L. 1998. Multivariate Data Analysis. Volume 5. Upper Saddle River, NJ:
Prentice Hall. pp. 207-219.
Hajigholizadeh, M. & Melesse, A.M. 2017. Assortment and spatiotemporal analysis
of surface water quality using cluster and discriminant analyses. Catena 151: 247-258.
Horn, A.H., Torres, I.C., Ribeiro, E.V. &
Junior, A.P.M. 2017. Relationship between metal water concentration and
anthropogenic pressures in a Tropical Watershed, Brazil. Geochimica Brasiliensis 30(2): 158.
Idris, A.B., Mamun, A.A., Amin, M., Soom, M., Noor, W. & Azmin, W.
2003. Review of water quality standards and practices in Malaysia. Pollution Research 22(2): 145-155.
Jaishankar, M., Tseten, T., Anbalagan, N.,
Mathew, B.B. & Beeregowda, K.N. 2014. Toxicity,
mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 7(2): 60-72.
Le, T.T.H., Zeunert,
S., Lorenz, M. & Meon, G. 2017. Multivariate
statistical assessment of a polluted river under nitrification inhibition in
the tropics. Environmental Science and
Pollution Research 24(15): 13845-13862.
Liu, D. & Zou, Z. 2012. Water quality
evaluation based on improved fuzzy matter-element method. Journal of Environmental Sciences 24(7): 1210-1216.
Matta, G. 2015. Evaluation and prediction of
deviation in physic-chemical characteristics of River Ganga. International Journal of Advancements in
Research and Technology 4(6): 14-30.
Mavukkandy, M.O., Karmakar, S. & Harikumar, P.
S. 2014. Assessment and rationalization of water quality monitoring network: A
multivariate statistical approach to the Kabbini River
(India). Environmental Science and
Pollution Research 21(17): 10045-10066.
McKinley, K., McLellan, I., Gagné,
F. & Quinn, B. 2019. The toxicity of potentially toxic elements (Cu, Fe,
Mn, Zn and Ni) to the cnidarian Hydra attenuata at environmentally relevant concentrations. Science of the Total Environment 665:
848-854.
Mousa, I.E., Emara,
I.K., Farfour, S.A. & Eldourghamy,
A.S. 2018. Microbial profile and its changing rates of Lake Burullus,
Egypt as wastewater receiving body. Water
and Environment Journal 32(1): 67-74.
Ogwueleka, T.C. 2014. Assessment
of the water quality and identification of pollution sources of Kaduna River in
Niger State (Nigeria) using exploratory data analysis. Water and Environment Journal 28(1): 31-37.
Ojok, W., Wasswa, J. & Ntambi, E. 2017.
Assessment of seasonal variation in water quality in River Rwizi using multivariate statistical techniques, Mbarara Municipality. Uganda. Journal Water Resource Protection 9(1):
83-97.
Othman, F., Alaa Eldin, M.E. & Mohamed, I. 2012. Trend analysis of a
tropical urban river water quality in Malaysia. Journal of Environmental Monitoring 14: 3164.
Psaltopoulos, D., Wade, A.J., Skuras, D., Kernan, M., Tyllianakis, E. & Erlandsson,
M. 2017. False positive and false negative errors in the design and
implementation of agri-environmental policies: A case
study on water quality and agricultural nutrients. Science of The Total Environment 575: 1087-1099.
Sarkar, S.K., Saha,
M., Takada, H., Bhattacharya, A., Mishra, P. & Bhattacharya, B. 2007. Water
quality management in the lower stratch of the River
Ganges, East Coast of India: An approach through environmental education. Journal of Cleaner Production 15:
1559-1567.
Stevenson, R.J. & Rollins, S.L. 2017.
Ecological assessment with benthic algae. In Methods in Stream Ecology. New
York: Academic Press. pp. 277-292.
Stefania, B., Calabrò,
P.S., Rosa, G. & Moraci, N. 2018. Selective
removal of heavy metals from landfill leachate by reactive granular filters. Science of The Total Environment 644:
335-341.
USEPA. 2001. Parameters
of Water Quality: Interpretation and Standards. Environmental Protection Agency.
Johnstown Castle, Co. Wexford, Ireland.
Van Ael, E., Belpaire, C., Breine, J., Geeraerts, C., Van Thuyne, G., Eulaers, I. & Bervoets, L.
2014. Are persistent organic pollutants and metals in eel muscle predictive for
the ecological water quality? Environmental
Pollution 186: 165-171.
VishnuRadhan, R., Zainudin, Z., Sreekanth, G.B., Dhiman, R., Salleh, M.N.
& Vethamony, P. 2017. Temporal water quality
response in an urban river: A case study in Peninsular Malaysia. Applied Water Science 7(2): 923-933.
Voyles, J., Vredenburg, V.T., Tunstall, T.S.,
Parker, J.M., Briggs, C.J. & Rosenblum, E.B. 2012. Pathophysiology in
mountain yellow-legged frogs (Rana muscosa) during a chytridiomycosis outbreak. PLoS ONE 7(4): 353-374.
Wang, Z., Meador, J.P. & Leung, K.M. 2016.
Metal toxicity to freshwater organisms as a function of pH: A meta-analysis. Chemosphere 144: 1544-1552.
Wu, Z., Wang, X., Chen, Y., Cai, Y. & Deng,
J. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science
of The Total Environment 612: 914-922.
Yan, J., Xu, Z., Yu, Y., Xu, H. & Gao, K.
2019. Application of a hybrid optimized BP network model to estimate water
quality parameters of Beihai Lake in Beijing. Applied Sciences 9(9): 1863.
Zhang, L., Zou, Z. & Shan, W. 2017.
Development of a method for comprehensive water quality forecasting and its
application in Miyun reservoir of Beijing, China. Journal of Environmental Sciences 56:
240-246.
Zhang, Y., Xu, M., Li, X., Qi, J., Zhang, Q.,
Guo, J., Yu, L. & Zhao, R. 2018. Hydrochemical characteristics and multivariate statistical analysis of natural water system:
A case study in Kangding County, Southwestern China. Water 10(1): 80.
*Corresponding author;
email:
faridahothman@um.edu.my
|