Sains
Malaysiana 50(3)(2021): 723-733
http://doi.org/10.17576/jsm-2021-5003-14
Artificial
Cultivation Anti-tumor Activity of Ganoderma mbrekobenum
(Penanaman
Buatan dan Aktiviti Anti-barah Ganoderma
mbrekobenum)
HU
HUIPING1*, LIU YUANCHAO1, LIANG XIAOWEI1, LI
XIANGMIN1, MO WEIPENG1, XIE YIZHEN1,2, ZHANG
ZHI2 & WU QINGPING1
1Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Guangdong Institute of Microbiology, Guangdong Academy of
Sciences, Guangdong 510070, Guangzhou, China
2Guangdong Yuewei Edible Fungi
Technol. Co. Ltd., Guangdong 510663, Guangzhou, China
Received:
25 December 2019/Accepted: 26 August 2020
ABSTRACT
Different varieties of Gandoerma have different functional effects. In this study, identification,
cultivation, anti-tumor activity characterization and active constituent
determination of Ganoderma specimen
collected in Tanzania were carried out. The fungi specimen was identified as Ganoderma
mbrekobenum by morphological and
molecular methods, which was found in Ghana and was firstly reported in 2016.
The fruit body was formed in artificial culture using sawdust as the main substrate at the
suitable fruiting temperature of 27-30 ℃, relative humidity 85-90%, and
daily processed lighting for 10 h (300-500 Lux). The fruit body of G. mbrekobenum is hard and has ordinary-yield production, uniform shapes, and high
stability. The in vitro experiments
showed that the extract from G. mbrekobenum fruit body inhibited cancer cell proliferation of various cells, such
as HepG2, MDA-MB-231 and U87. The water extract of the fruit body was tested,
and the content of crude polysaccharides was 1.12%. The data showed that G.
mbrekobenum was a potential valuable
variety. This is the first study that reports the cultivation method and the
anti-tumor activity of G. mbrekobenum.
Keywords: Ganoderma; medical fungi; polysaccharides
ABSTRAK
Varieti Ganoderma yang berbeza mempunyai kesan kefungsian
yang berbeza. Dalam kajian ini, pengenalpastian, penanaman, pencirian aktiviti
anti-barah dan penentuan sebatian aktif terhadap spesimen Ganoderma yang diperoleh dari Tanzania telah
dijalankan. Melalui kaedah morfologi dan molekul, spesimen kulat tersebut telah
dikenal pasti sebagai Ganoderma mbrekobenum, yang sebelum ini ditemui di Ghana dan pertama kali dilaporkan pada
tahun 2016. Jasad buah telah terhasil dalam kultur buatan menggunakan serbuk
gergaji sebagai substrat utama pada suhu untuk berbuah yang sesuai antara 27-30
°C, kelembapan relatif 85-90% dan pencahayaan setiap hari selama 10 jam
(300-500 Lux). Jasad buah G. mbrekobenum adalah keras dan mempunyai penghasilan biasa, berbentuk seragam dan kestabilan
yang tinggi. Uji kaji secara in vitro menunjukkan bahawa ekstrak daripada jasad buah G. mbrekobenum merencat pembahagian beberapa sel barah
seperti HepG2, MDA-MB-231 dan U87. Ekstrak air jasad buah telah diuji dan
didapati bahawa kandungan polisakarida mentah adalah sebanyak 1.12%. Data
menunjukkan bahawa kulat ini merupakan varieti bernilai yang berpotensi. Ini
merupakan kajian yang pertama melaporkan kaedah penanaman dan aktiviti
anti-barah G. mbrekobenum.
Kata kunci: Ganoderma; kulat perubatan; polisakarida
REFERENCES
Bao, H. & Wang, X. 2014. Studies
on chemical constituents of Ganoderma
sinense. Journal of Fungal Research 12(4): 187-196.
Cao, Y., Wu, S.H. & Dai, Y.C.
2012. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal
Diversity 56(1): 49-62.
Cao, Y. & Yuan, H. 2013. Ganoderma mutabile sp. nov. from
southwestern China based on morphological and molecular data. Mycological Progress 12(1): 121-126.
Chinese
Pharmacopoeia Committee. 2015. Chinese
Pharmacopoeia. Beijing: People’s Press.
Coetzee, M.P.A., Marincowitz, S.,
Muthelo, V.G. & Wingfield, M.J. 2015. Ganoderma species, including new taxa associated with root rot of the iconic Jacaranda mimosifolia in Pretoria, South
Africa. IMA Fungus 6(1): 249-256.
Crous, P.W., Wingfield, M.J., Richardson,
D.M., Le Roux, J.J., Strasberg, D., Edwards, J., Roets, F., Hubka, V., Taylor,
P.W., Heykoop, M., Martín, M.P., Moreno, G., Sutton, D.A., Wiederhold, N.P.,
Barnes, C.W., Carlavilla, J.R., Gené, J., Giraldo, A., Guarnaccia, V., Guarro,
J., Hernández-Restrepo, M., Kolařík, M., Manjón, J.L., Pascoe, I.G.,
Popov, E.S., Sandoval-Denis, M., Woudenberg, J.H., Acharya, K., Alexandrova,
A.V., Alvarado, P., Barbosa, R.N., Baseia, I.G., Blanchette, R.A., Boekhout,
T., Burgess, T.I., Cano-Lira, J.F., Čmoková, A., Dimitrov, R.A., Dyakov,
M.Y., Dueñas, M., Dutta, A.K., Esteve-Raventós, F., Fedosova, A.G., Fournier,
J., Gamboa, P., Gouliamova, D.E., Grebenc, T., Groenewald, M., Hanse, B.,
Hardy, G.E., Held, B.W., Jurjević, Ž., Kaewgrajang, T., Latha, K.P., Lombard,
L., Luangsa-Ard, J.J., Lysková, P., Mallátová, N., Manimohan, P., Miller, A.N.,
Mirabolfathy, M., Morozova, O.V., Obodai, M., Oliveira, N.T., Ordóñez, M.E.,
Otto, E.C., Paloi, S., Peterson, S.W., Phosri, C., Roux, J., Salazar, W.A.,
Sánchez, A., Sarria, G.A., Shin, H.D., Silva, B.D., Silva, G.A., Smith, M.T.,
Souza-Motta, C.M., Stchigel, A.M., Stoilova-Disheva, M.M., Sulzbacher, M.A.,
Telleria, M.T., Toapanta, C., Traba, J.M., Valenzuela-Lopez, N., Watling, R.
& Groenewald, J.Z. 2016. Fungal planet description sheets: 400-468. Persoonia- Molecular Phylogeny and Ecolution
of Fungi 36(1): 316-458.
Costa-Rezende, D.H., Gugliotta,
A.D., Mello, Goes-Neto, A., Reck, M.A., Robledo, G.L. & Drechsler-Santos,
E.R. 2016. Amauroderma calcitum sp. nov. and notes
on taxonomy and distribution of Amauroderma species (Ganodermataceae). Phytotaxa 244(2): 101-124.
Elliott, M.L., Des, J., Elizabeth,
A., Ortiz, J.V. & Macias, T. 2018. Genetic variability of Ganoderma zonatum infecting palms in
Florida. Mycologia 110(2): 339-346.
Hsu, K. & Cheng, K. 2018. From
nutraceutical to clinical trial: Frontiers in Ganoderma development. Applied
Microbiology & Biotechnology 102(21): 9037-9051.
Hu, H.P., Liu, Y.C., Mo, W.P.,
Huang, L.H., Zhang, Y.F., Li, T.H., Chen, R. & Xie, Y.Z. 2017. Isolation,
characterization and anti-cancer activity of two Ganoderma leucocontextum srains. Acta Edulis Fungi 24(1): 50-54.
Hu, H.P., Zhang, Y.F., Zhang, Z.,
Shao, M.C., Wu, Q.P., Keto, M. & Yang, X.B. 2011. Bioactive components in
cultivated fruit bodies of three wild Ganoderma strains collected from Tanzania. Acta
Edulis Fungi 18(3): 64-66.
Isaac, I.L., Yin, W.A.W.C., Bakar,
M.F.A., Idris, A.S., Bakar, F.D.A., Bharudin, I. & Murad, A.M.A. 2018.
Transcriptome datasets of oil palm pathogen Ganoderma
boninense. Data in Brief 17: 1108-1111.
Jia, H.Y., Wang, Y.T., Zhang, Z.H.,
Feng, N., Liu, Y.F., Zhou, S.Z., Zhang, Z., Zhang, J.S. & Tang,
Q.J. 2017. Determination
of triterpenoids in Ganodema lingzhi from different areas and species by HPLC. Microbiology
China 44(1): 238-244.
Kubota, T., Yukihiro, A., Iwao, M.
& Hideo, M. 1982. Structures of ganoderic acid A and B, two new lanostane
type bitter triterpenes from Ganoderma
lucidum (FR.) KARST Helvetica Chimica
Acta 65(2): 611-619.
Li, P., Deng, Y., Wei, X. & Xu,
J. 2013. Triterpenoids from Ganoderma
lucidum and their cytotoxic activities. Natural
Product Research 27(1): 17-22.
Li, T., Hu, H., Deng, W., Wu, S.,
Wang, D. & Tamdrin, T. 2015a. Ganoderma
leucocontextum, a new member of the G.
lucidum complex from southwestern China. Mycoscience 56(1): 81-85.
Li, Y., Li, T.H., Yang, Z.L., Bau,
T. & Dai, Y.C. 2015b. Atlas of
Chinese Macrofungal Resources. Zhengzhou: Zhongyuan People's Publishing
House. pp. 401-412.
Li, X.M., Xie, Y.Z., Peng, J.J., Hu,
H.P., Wu, Q.P. & Yang, B.B. 2019.
Ganoderiol F purified from Ganoderma
leucocontextum retards cell cycle progression by inhibiting CDK4/CDK6. Cell Cycle 18(21): 1-14.
Lin, Z.B. 2001. The integrated studies on Ganoderma lucidum Kayst. guided by traditional Chinese medical
theories. Chinese Journal of Integrated
Traditional Western Medicine 21(12):
883-884.
Liu,
W., Tang, Q.J., Zhang, G.Y., Feng, N. & Han, W. 2018. In vitro anti-tumor and immunological activity of Ganoderma lobatum. Microbiol China. 45(4): 819-824.
Liu, Y.C., Liu, P., Hu, H.P., Li, D.
& Li, Y. 2016. Tricholosporum, a
newly recorded genus of Agaricomycetes in China. Phytotaxa. 289(3): 263-270.
Luangharn, T., Karunarathna, S.C.,
Khan, S., Xu, J., Mortimer, P. & Hyde, K. 2017. Antibacterial activity,
optimal culture conditions and cultivation of the medicinal Ganoderma australe, new to Thailand. Mycosphere 8(8): 1108-1123.
Mehmet, S.D., Mehmet, C.Y.,
Ayşe, G., İzzet, Y. & Akdag, M.Z. 2017. The protective effect of
melatonin and Ganoderma lucidum against the negative effects of extremely low frequency electric and magnetic
fields on pulp structure in rat teeth. Biotechnology
& Biotechnological Equipment 31(5): 979-988.
Osińska-Jaroszuk, M., Jaszek,
M., Mizerska-Dudka, M., Błachowicz, A., Rejczak, T.P., Janusz, G.,
Wydrych, J., Polak, J., Jarosz-Wilkołazka, A. &
Kandefer-Szerszeń, M. 2014. Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with
cytostatic and antibacterial properties. BioMed
Research International 2014(1): 743812-743812.
Raseta, M., Popovic, M., Capo, I.,
Stilinovic, N., Vukmirovic, S., Milosevic, B. & Karaman, M. 2020.
Antidiabetic effect of two different Ganoderma species tested in alloxan diabetic rats. RSC
Advances 10(17): 10382-10393.
Saccardo, P.A. & Saccardo, D.
1905. Supplementum universale. Pars VI. Hymenomycetae-Laboulbeniomycetae. Sylloge Fungorum 17: 860.
Sliva,
D., Loganthan, J., Jiang, J., Jedinak, A.,
Lamb, J.G., Terry, C., Baldridge, L.A., Adamec, J., Sandusly, G.E. &
Dudhgaonkar, S. 2012. Mushroom Ganoderma
lucidum prevents colitis-associated carcinogenesis in mice. PLoS ONE 7(10): 1-13.
Syahriel, A., Yee, S.L., Sylvia,
J.D., Arnnyitte, A. & Khim, P.C. 2018. Ganoderma boninense isolated from
Sabah, Malaysia exhibits potent antibacterial activity against clinically
important bacterial pathogens. Bangladesh
Journal of Pharmacology 13(1): 10-12.
Wang, D.M., Wu, S.H., Su, C.H.,
Peng, J.T., Shi, Y.H. & Chen, L.Z. 2009. Ganoderma multipileum, the correct name for 'G. lucidum' in tropical Asia. Botanical
Studies 50(4): 451-458.
White, T.J., Bruns, T.D., Lee, S.
& Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal
RNA genes for phylogenetics. In PCR
Protocols A Guide to Methods & Applications, edited by Innis, M.A., Gelfand, D.H., Sninsky,
J.J. & White, T.J. New York: Academic Press, Inc. pp. 315-322.
Wu, Q.P., Xie, Y.Z., Deng, Z.Q., Li,
X.M., Yang, W.N., Jiao, C.W., Ling, F., Li, S.Z., Pan, H.H. & Yee, A.J.
2012. Ergosterol peroxide isolated from Ganoderma lucidum abolishes microRNA
miR-378-mediated tumor cells on chemoresistance. PLoS ONE 7(8): 1-14.
Xing, J.H. & Cui, B.K. 2018. Ganoderma species diversity,
classification and phylogenetic studies, Chinese Society of Fungus Academic
Conference in Shandong Taian, China. p. 295.
Xing, J.H., Sun, Y.F., Han, Y.L.,
Cui, B.K. & Dai, Y.C. 2018. Morphological
and molecular identification of two new Ganoderma species on Casuarina equisetifolia from China. Mycokeys 34: 93-108.
Xing, J.H., Song, J., Decock, C.
& Cui, B.K. 2016. Morphological characters and phylogenetic analysis reveal
a new species within the Ganoderma
lucidum complex from South Africa. Phytotaxa 266(2): 115-124.
Xing, Z.T., Men, D.Y., Tang, Q.J.,
Wang, N., Li, M.R. & Guan, S.M. 2008. NY/T
1676-2008 Determination of Crude Mushroom Polysaccharides. The Ministry of
Agriculture of the People’s Republic of China. Beijing: China Agriculture
Press.
Yong,
T.Q., Chen, S.D., Xie, Y.Z., Chen, D.L., Su, J.Y., Shuai, O., Jiao, C.W. &
Zuo, D. 2018. Hypouricemic effects of Ganoderma
applanatum in hyperuricemia mice through OAT1 and GLUT9. Frontiers in Pharmacology 8(996): 1-11.
Zhao, J.D. & Zhang, X.Q. 2000. Flora Fungorum Sinicorum Vol. 18
Ganodermataceae. Beijing: Science Press.
Zhou, L.W., Cao, Y., Wu, S.H.,
Josef, V., Li, D.W., Li, M.J. & Dai, Y.C. 2014. Global diversity of the Ganoderma lucidum complex
(Ganodermataceae, Polyporales) inferred from morphology and multilocus
phylogeny. Phytochemistry 114: 7-15.
*Corresponding
author; email: huhp@gdim.cn
|