Sains Malaysiana 50(3)(2021): 735-742
http://doi.org/10.17576/jsm-2021-5003-15
Evaluation of Chitin as a Biomarker of Pathogenic Fungal
Isolates
(Penilaian
Kitin sebagai Biopenanda Pencilan Kulat Patogen)
AHMAD SHEHAB AHMAD LAFI1,2,
JACINTA SANTHANAM3*, TZAR MOHD NIZAM KHAITHIR4, NUR
FASHYA MUSA5 & FAHRUL HUYOP1
1Department of Biotechnology and
Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
2Center of Desert Studies, University
of Anbar, Ramadi, Iraq
3Biomedical Science Programme, Universiti
Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal
Territory, Malaysia
4Department of Medical Microbiology and Immunology, Faculty
of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob
Latiff, Bandar Tun Razak Cheras, 56000 Kuala Lumpur, Federal Territory,
Malaysia
5Institute of Bioproduct Development, Universiti Teknologi
Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
Received: 28 May 2020/Accepted: 27
August 2020
ABSTRACT
Chitin is a polysaccharide component of the inner cell wall
of fungi that has been used to estimate fungal invasion in plant products.
However, its detection in major pathogenic fungal species has not been
investigated. The present study aimed to determine the chitin contents of
pathogenic fungal species in order to evaluate its diagnostic potential as a
biomarker for fungal infections. High performance liquid chromatography (HPLC)
was used to measure chitin content. Pure chitin was acid hydrolyzed and the
fluorescence of 9-fluorenylmethylchloroformate (FMOC-CI) derivatives of
glucosamine produced were measured. The chitin contents of ten pathogenic
fungal isolates were determined per mycelial dry weight. They varied from 18.61
(± 0.09) to 47.12 (± 0.50) µg/mg dry mycelial weight. Candida albicans and Cryptococcus
neoformans exhibited the highest and
lowest levels of chitin, respectively. Based upon relative amounts of chitin
produced, three groups namely: high (Candida albicans, Cryptococcus gattii,
Aspergillus niger and Penicillium at 47.12, 46.98, 46.05, and 44.15 µg/mg
respectively), medium (Rhizopus, Aspergillus fumigatus, Fusarium solani, and Mucor at 36.61, 36.30, 35.03, and 34.84 µg/mg, respectively), and low (Candida
tropicalis and Cryptococcus
neoformans at 20.78 and 18.61 µg/mg,
respectively), were identified. Chitin was not detectable in bacterial isolates
used as controls. The chitin detection method offers a sensitive and specific
tool for the quantification of chitin in pathogenic fungal isolates. The
detection of chitin may be a useful assay for the diagnosis of fungal
infections in clinical samples.
Keywords: Biomarker; chitin; diagnosis; HPLC; pathogenic
fungi
ABSTRAK
Kitin adalah komponen polisakarida pada dinding sebelah dalam kulat yang telah digunakan untuk menentukan kehadirankulat pada hasil tumbuhan. Walau bagaimanapun, pengesanan kitin dalam kulatpatogen yang utama belum lagi dikaji. Kajian ini bertujuan menentukan kandungan kitin dalam spesieskulat patogen untuk menilai potensi diagnostiknya sebagai biopenanda jangkitan kulat. Kaedah kromatografi cecair prestasi tinggi (HPLC) telah digunakan untuk mengukur kandungan kitin. Hidrolisasi asid dilakukan terhadap kitin tulen untuk menghasilkan terbitan glukosamin 9-fluorenilmetilkloroformat (FMOC-CI) yang berpendafluor, lalu diukur. Kandungan kitin bagi sepuluh pencilan kulat patogen ditentukan berdasarkan berat kering miselia. Hasil yang diperoleh adalah dalam julat 18.61 (± 0.09) ke 47.12 (± 0.50) µg/mg berat kering miselia. Kandungan tertinggi kitin terdapat pada Candida albicans manakala kandungan yang paling rendah pada Cryptococcus neoformans. Berdasarkan kandungan relatif kitin, tiga kumpulan dikenal pasti, iaitu tinggi (Candida albicans, Cryptococcus gattii, Aspergillus niger dan Penicillium dengan 47.12, 46.98, 46.05 dan 44.15 µg/mg masing-masing), sederhana (Rhizopus,
Aspergillus fumigatus, Fusarium solani dan Mucor dengan 36.61, 36.30, 35.03 dan 34.84 µg/mg masing-masing) dan rendah (Candida
tropicalis dan Cryptococcus
neoformans dengan 20.78 dan 18.61 µg/mg masing-masing). Kitin tidak dapat dikesan pada pencilan bakteria yang diguna sebagai kawalan. Kaedah pengesanan kitin boleh digunakan sebagai suatu alat khusus dan sensitif untuk kuantifikasi kitin pada pencilan kulat patogen. Pengesanan kitin merupakan suatu asai yang mungkin berguna untuk diagnosis jangkitan kulat dalam sampel klinikal.
Kata kunci: Biopenanda; diagnosis; HPLC;
kitin; kulat patogen
REFERENCES
Appuhn, A. & Joergensen, R.G.
2006. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry 38:
1040-1051.
Arvanitis,
M., Anagnostou, T., Fuchs, B.B., Caliendo, A.M. & Mylonakis, E. 2014. Molecular and nonmolecular diagnostic methods for
invasive fungal infections. Clinical
Microbiology Reviews 27(3): 490-526.
Brakhage, A.A. 2005. Systemic fungal
infections caused by Aspergillus species: Epidemiology, infection process and virulence determinants. Current Drug Targets 6: 875-886.
Donald, W.W. & Mirocha, C.J.
1977. Chitin as a measure of fungal growth in stored corn and soybean seed. Cereal Chemistry 54: 466-474.
Ekblad, A. & Nasholm, T. 1996.
Determination of chitin in fungi and mycorrhizal roots by an improved HPLC
analysis of glucosamine. Plant Soil 178: 29-35.
Ekblad, A., Wallander, H. &
Nasholm, T. 1998. Chitin and ergosterol combined to measure total and living
fungal biomass in ectomycorrhizas. New
Phytologist 138: 143-149.
Feofilova, E.P., Nemtsev, D.V.,
Tereshina, V.M. & Memorskaya, A.S. 2006. Developmental change of the
composition and content of the chitin-glucan complex in the fungus Aspergillus niger. Applied Biochemistry and Microbiology 42(6): 545-549.
Free, S.J. 2013. Fungal cell wall
organization and biosynthesis. Advances
in Genetics 81: 33-82.
Garey, K.W., Rege, M., Pai, M.P.,
Mingo, D.E., Suda, K.J., Turpin, R.S. & Bearden, D.T. 2006. Time to
initiation of fluconazole therapy impacts mortality in patients with
candidemia: A multi-institutional study.
Clinical Infectious Diseases 43(1): 25-31.
Gay, L. 1991. Chitin content and
chitin synthase activity as indicators of the growth of three different
anaerobic rumen fungi. Federation of
European Microbiological Societies Microbiology Letters 80(1): 99-102.
Joergensen, R.G. & Wichern, F.
2008. Quantitative assessment of the fungal contribution to microbial tissue in
soil. Soil Biology and Biochemistry 40(12): 2977-2991.
Kedzierska, A., Kochan, P.,
Pietrzyk, A. & Kedzierska, J. 2007. Current status of fungal cell wall
components in the immunodiagnostics of invasive fungal infections in humans:
Galactomannan, mannan and (1A3)-b-D-glucan antigens. European Journal of Clinical Microbiology & Infectious Diseases 26(11): 755-766.
Kim, S.K. 2013. Chitin and Chitosan Derivatives: Advances in Drug Discovery and
Developments. Florida: CRC Press, Taylor & Francis Group.
Latge, J.P. 2007. The cell wall: A
carbohydrate armour for the fungal cell. Molecular
Microbiology 66: 279-290.
Lin, H.H. & Cousin, M.A. 1985.
Detection of mold in processed foods by high performance liquid chromatography. Journal of Food Protection 48(8):
671-678.
Maertens, J., Theunissen, K.,
Verbeken, E., Lagrou, K., Verhaegen, J., Boogaerts, M. & Eldere, J.V. 2004.
Prospective clinical evaluation of lower cut-offs for galactomannan detection
in adult neutropenic cancer patients and haematological stem cell transplant
recipients. British Journal of
Haematology 126(6): 852-860.
Maertens, J., Van Eldere, J.,
Verhaegen, J., Verbeken, E., Verschakelen, J. & Boogaerts, M. 2002. Use of
circulating galactomannan screening for early diagnosis of invasive
aspergillosis in allogeneic stem cell transplant recipients. The Journal of Infectious Diseases 186(9): 1297-1306.
Munro,
C.A. & Gow, N.A.R. 2001. Chitin synthesis in human pathogenic
fungi. Medical Mycology 39(Suppl
1): 41-53.
Muzzarelli, R.A.A., Boudrant,
J., Meyer, D., Manno, N., DeMarchis, M. & Paoletti, M.G. 2012. Current views on fungal chitin/chitosan, human
chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri
Braconnot, precursor of the carbohydrate polymers science, on the chitin
bicentennial. Carbohydrate Polymers 87(2): 995-1012.
Nandi, B. 1978. Glucosamine analysis
of fungus-infected wheat as a method to determine the effect of antifungal
compounds in grain preservation. Cereal
Chemistry 55: 121-126.
Nilsson, K. & Bjurman, J. 1998.
Chitin as an indicator of the biomass of two wood-decay fungi in relation to
temperature, incubation time, and media composition. Canadian Journal of Microbiology 44(6): 575-581.
Penman, D., Britton, G., Hardwick, K.,
Collin, H.A. & Isaac, S. 2000. Chitin as a measure of biomass of Crinipellis perniciosa, causal agent of
witches’ broom disease of Theobroma cacao. Mycological Research 104(6): 671-675.
Pfaller, M.A. & Diekema, D.J.
2004. Rare and emerging opportunistic fungal pathogens: Concern for resistance
beyond Candida albicans and Aspergillus fumigatus. Journal of Clinical Microbiology 42(10):
4419-4431.
Phillips, M.W. & Gordon, G.L.
1989. Growth characteristics on cellobiose of three different anaerobic fungi
isolated from the ovine rumen. Journal of
Antimicrobial Chemotherapy 55(7): 1695-1702.
Pisa,
D., Alonso, R., Rábano, A., Horst, M.N. & Carrasco, L. 2016. Fungal
enolase, β-tubulin, and chitin are detected in brain tissue from
Alzheimer’s disease patients. Frontiers
in Microbiology 7: 1772.
Plaine,
A., Walker, L., Da Costa, G., Mora-Montes, H.M., McKinnon, A., Gow, N.A.R.,
Gaillardin, C., Munro, C.A. & Richard, M.L. 2008. Functional analysis of Candida albicans GPI-anchored proteins:
Roles in cell wall integrity and caspofungin sensitivity. Fungal Genetics and Biology 45(10):
1404-1414.
Racil, Z., Kocmanova, I., Lengerova,
M., Weinbergeroca, B., Buresova, L., Toskova, M., Winterova, J., Timilsina, S.,
Rodriguez, I. & Mayer, J. 2010. Difficulties in using 1,3-b-D-glucan as the
screening test for the early diagnosis of invasive fungal infections in
patients with haematological malignancies - high frequency of false-positive
results and their analysis. Journal of
Medical Microbiology 59(Pt9): 1016-1022.
Richardson, M.D. 2005. Changing
patterns and trends in systemic fungal infections. Journal of Antimicrobial Chemotherapy 56(Suppl 1): i5-i11.
Ride, J.P. & Drysdale, R.B.
1972. A rapid method for the chemical estimation of filamentous fungi in plant
tissue. Physiological Plant Pathology 2(1):
7-15.
Sendid, B., Poirot, J.L., Tabouret,
M., Bonnin, A., Caillot, D., Camus, D. & Poulain, D. 2002. Combined
detection of mannanaemia and antimannan antibodies as a strategy for the
diagnosis of systemic infection caused by pathogenic Candida species. Journal of
Medical Microbiology 51(5): 433-442.
Taylor,
M.J., Ponikau, J.U., Sherris, D.A., Kern, E.B., Gaffey, T.A., Kephart, G. &
Kita, H. 2002. Detection of fungal organisms in eosinophilic mucin using a
fluorescein-labeled chitin-specific binding protein. Otolaryngology-Head and Neck Surgery 127(5): 377-383.
Tharanathan, R.N. & Kittur, F.S.
2003. Chitin - the undisputed biomolecule of great potential. Critical Reviews in Food Science and
Nutrition 43(1): 61-87.
Vallabhaneni, S., Mody, R.K.,
Walker, T. & Chiller, T. 2016. The global burden of fungal diseases. Infectious Disease Clinics of North America 30(1): 1-11.
Walker,
L.A., Munro, C.A., de Bruijn, I., Lenardon, M.D., McKinnon, A. & Gow,
N.A.R. 2008. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathogens 4(4): e1000040.
Wallander, H., Ekblad, A., Godbold,
D.L., Johnson, D., Bahr, A., Baldrian, P., Bjork, R.G., Kieliszewska-Rokicka,
B., Kjoller, R., Kraigher, H., Plassard, C. & Rudawska, M. 2013. Evaluation
of methods to estimate production, biomass and turnover of ectomycorrhizal
mycelium in forests soils - A review. Soil
Biology and Biochemistry 57: 1034-1047.
Whipps, J.M. & Lewis, D.H. 1980.
Methodology of a chitin assay. Transactions
of the British Mycological Society 74(2): 416-418.
*Corresponding author; email: jacinta@ukm.edu.my
|