Sains Malaysiana 50(3)(2021):
849-858
http://doi.org/10.17576/jsm-2021-5003-25
Effect of Aging Heat Treatment on Corrosion Behavior and
Corrosion Kinetics of 17-4PH Stainless Steel in Artificial Saliva
(Kesan Rawatan Panas Penuaan terhadap Tingkah Laku Kakisan dan Kinetik Kakisan Keluli Tahan Karat 17-4PH dalam Air Liur Buatan)
ONTHIDA KOSASANG1,2*, MANUTCHAYA WONGKAEWMOON2 & SOMWAN CHUMPHONGPHAN1,2
1School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
2Center of Innovative Materials for Sustainability (iMatS), School of Science, Mae Fah Luang Universit, Chiang Rai 57100, Thailand
Received: 11 June 2020/Accepted: 7 September 2020
ABSTRACT
The corrosion behavior of the sintered 17-4PH stainless
steel samples aged at different conditions in artificial saliva was studied
using the method of electrochemical and weight loss after exposure for various
periods of time. The results showed that the samples aged at 480 °C for 1 h
exhibited the highest corrosion resistance. The pitting corrosion was
predominantly initiated from existing, isolated
pores and further accelerated. The corrosion kinetics trend is found to
be more consistent with a bimodal function form rather than the classical
power-law function.
Keywords: 17-4PH stainless steel; artificial saliva;
corrosion behavior; corrosion kinetics
ABSTRAK
Sifat kakisan sampel keluli kalis karat 17-4PH dalam air liur tiruan telah dikaji menggunakan kaedah elektrokimia dan kehilangan berat selepas terdedah pada jangka masa yang berbeza.
Keputusan yang diperoleh menunjukkan bahawa sampel pada 480 °C selama 1 jam mempunyai rintangan kakisan tertinggi. Kakisan pempitan adalah dominan bermula daripada liang yang sedia ada dan terus dipercepatkan. Corak kinetik kakisan didapati lebih berpadan dengan fungsi bimodal berbanding dengan fungsi hukum-kuasa klasik.
Kata kunci: Air liur tiruan; keluli kalis karat 17-4PH; kinetik kakisan; sifat kakisan
REFERENCES
Al-Moubaraki, A.H. & Al-Rushud, H.H. 2018. The red sea as a corrosive environment:
Corrosion rates and corrosion mechanism of aluminum alloys 7075, 2024, and
6061. International Journal of Corrosion 2018: 1-16.
Al-Moubaraki, A.H., Al-Judaibi, A.
& Asiri, M. 2014. Corrosion of C-steel in the red
sea: Effect of immersion time and inhibitor concentration. International Journal of Electrochemical Science 10(5): 4252-4278.
Chung, C. & Tzeng, Y. 2019. Effects of aging treatment
on the precipitation behavior of ε-Cu phase and mechanical properties of
metal injection molding 17-4PH stainless steel. Materials Letters 237: 228-231.
Costa, I., Franco, C.V., Kunioshi,
C.T. & Rossi, J.L. 2006. Corrosion resistance of injection-molded 17-4PH
steel in sodium chloride solution. Corrosion 62(4): 357-365.
Escobar, C.G.N., Domingues, J.A.,
Gomes, J.C. & Cohelo, U. 2017. Effects of diferent salivary pH on the surface and roughness of different
orthodontic wires. Journal of Research in
Dentistry 2(6): 527-536.
Frankel, G.S. 1998. Pitting corrosion of metals a review of
the critical factors. Journal of The
Electrochemical Society 145(8): 2186-2198.
Gülsoy, H.Ö., Salman, S. & Özbek, S. 2004. Effect of FeB additions on sintering characteristics of injection moulded 17-4PH stainless steel powder. Journal of
Materials Science 39(15): 4835-4840.
He, S. & Jiang, D. 2018. Electrochemical behavior and
properties of passive films on 304 stainless steel under high temperature and
stress conditions. International Journal
of Electrochemical Science 13: 5832-5849.
Hsiao, C.N., Chiou, C.S. &
Yang, J.R. 2002. Aging reactions in a 17-4PH stainless steel. Materials Chemistry and Physics 74(2):
134-142.
Li, L., Wang, J., Yan, J., Fan, H., Zeng, Bo., Li, X. &
Dong, H. 2020. Low-temperature oxy-nitriding of AISI 304 austenitic stainless
steel for combat corrosion and wear in HCl medium. Metallurgical and Materials Transactions A: Physical Metallurgy and
Materials Science 51(1): 419-435.
Liu, D., Liu, D., Zhang, X., Liu, C. & Ao, N. 2018. Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface
rolling process. Materials Science and
Engineering A 726: 69-81.
Manonukul, A., Likityingwara,
W., Rungkiatnawin, P., Muenya,
N., Amoranan, S., Kittinantapol,
W. & Supapunt, S. 2007. Study of recycled and
virgin compounded metal injection moulded feedstock
for stainless steel 630. Journal of Solid Machanic and Material Engineering 1(4): 411-420.
Melchers, R.E. 2019. Predicting long-term corrosion of metal
alloys in physical infrastructure. npj Materials
Degradation 3(1): 1-7.
Melchers, R.E. 2014. Bi-modal trend in the long-term
corrosion of aluminium alloys. Corrosion Science 82: 239-247.
Morcillo, M., Chico, B., Díaz, I., Cano, H.
& Fuente, D.D.L 2013. Atmospheric corrosion data of weathering steels. A
review. Corrosion Science 77: 6-24.
Mudali, U.K., Bhaduri,
A.K. & Gnanamoorthy, J.B. 1990. Localised corrosion behaviour of
17-4 PH stainless steel. Materials
Science and Technology 6(5): 475-481.
Murayama, M., Katayama, Y. & Hono,
K. 1999. Microstructural evolution in a 17-4PH stainless steel after aging at
400°C. Metallurgical and Materials
Transactions A: Physical Metallurgy and Materials Science 30(2): 345-353.
Raja, K.S. & Prasad, R.K. 1995. Intergranular and
general corrosion behaviour of 17‐4PH
weldments. Materials and Corrosion 46(9): 534-538.
Renita, D., Rajendran, S. & Chattree,
A. 2017. Influence of artificial saliva on the corrosion behavior of dental
alloys: A review. Indian Journal of
Advances in Chemical Science 4(4): 478-483.
Shoushtari, M.R.T. 2010. Effect of ageing heat
treatment on corrosion behavior of 17-4PH stainless steel in 3.5% NaCl. International Journal of Iron and Steel of
Iran 7(1): 33-36.
Sobral, A.V.C., Ristow,
W., Correa, O.V., Franco, C.V. & Costa, I. 2001. Corrosion behaviour of injection moulded 316L and 17-4PH stainless steels in a sodium chloride solution. Key Engineering Materials 189-191:
667-672.
Suri, P., Smarslok, B.P. &
German, R.M. 2006. Impact properties of sintered and wrought 17-4PH stainless
steel. Powder Metallurgy 49(1):
40-47.
Szewczyk-Nykiel, A. 2014 The effect of the addition
of boron on the densification, microstructure and properties of sintered 17-4PH
stainless steel. Technical Transactions 13: 85-96.
Szewczyk-Nykiel, A. & Kazior,
J. 2017. Effect of aging temperature on corrosion behavior of sintered 17-4 PH
stainless steel in dilute sulfuric acid solution. Journal of Materials Engineering and Performance 26(7): 3450-3456.
Viswanathan, U.K., Banerjee, S. & Krishnan, R. 1988.
Effects of aging on the microstructure of 17-4 PH stainless steel. Materials Science and Engineering 104:
181-189.
Wang, J.H., Wei, F.I., Chang, Y.S. & Shih, H.C. 1997.
The corrosion mechanism of carbon steel in SO2 polluten atmospheres. Materials Chemistry and
Physics 47(1): 1-8.
Wu, Y., Blaine, D., Schlaefer, C.,
Marx, B. & German, R.M. 2002. Sintering densification and microstructural
evolution of injection molding grade 17-4PH stainless steel powder. Metallurgical and Materials Transactions A:
Physical Metallurgy and Materials Science 33(7): 2185-2194.
Yoo, W.D., Lee, J.H., Youn, K.T.
& Rhyim, Y.M. 2006. Study on the microstructure
and mechanical properties of 17-4PH stainless steel depending on heat treatment
and aging time. Solid State Phenomena 118: 15-20.
Zhang, H. 1992. Powder injection moulding (PIM) of 17-4PH stainless steel. Metal
Powder Report 47(10): 59.
Zhang, M. & Chu, Q. 2012. Heat treatment of 17-4PH
stainless steel. Heat Treatment of Metals 37(9): 8-11.
Ziewiec, A., Zielińska-Lipiec,
A. & Tasak, E. 2014. Microstructure of welded
joints of X5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment. Archives of
Metallurgy and Materials 59: 965-970.
*Corresponding author; email:
onthida.kos@mfu.ac.th
|