Sains Malaysiana 50(4)(2021): 1037-1045

http://doi.org/10.17576/jsm-2021-5004-14

 

Cholinesterase Inhibition Activity and Molecular Docking Study of Eugenol Derivatives

(Perencatan Aktiviti Antikolinesterase dan Kajian Doking Molekul Terbitan Eugenol)

 

KHAIRUNISA MOHD ZAMLI1, ASNUZILAWATI ASARI1,2*, KOOI YEONG KHAW3,4, VIKNESWARAN MURUGAIYAH3, MARIYA AL-RASHIDA5, HABSAH MOHAMAD6, HANIS MOHD YUSOFF1,2, NURUL HUDA ABDUL WAHAB1,2 & HASNAH OSMAN7

 

1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

2Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

3Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia

 

4Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

 

5Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore-54600, Pakistan

 

6Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

7School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800 Penang, Malaysia

 

Received: 27 November 2019/Accepted: 3 September 2020

 

ABSTRACT

The study was conducted to explore the anticholinesterase inhibition property of eugenol derived molecules. Ten eugenol derivatives were synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by Ellman’s method. Most of the tested derivatives showed higher inhibition on BChE than AChE, however, their overall inhibitory activity was weak. In contrast, three derivatives (compounds 3,6,9) showed higher and good AChE inhibitory activity of more than 50% inhibition at 10 µg/mL. Among them, compound 9 bearing a ethyl substituent at para position of the benzoyl ring showed the most potent AChE inhibition, with IC50 of 5.64 µg/mL. Ligand-protein docking simulation was also performed for the most active derived molecules (compounds 3,6,9).

 

Keywords: Acetylcholinesterase; butyrylcholinesterase; eugenol derivatives; molecular docking

 

ABSTRAK

Kajian ini dijalankan untuk mengetahui sifat perencatan antikolinesterase bagi terbitan eugenol. Sepuluh terbitan eugenol telah disintesis dan dikaji untuk aktiviti perencatan terhadap asetilkolinesterase (AChE) dan butirilkolinesterase (BChE) melalui kaedah Ellman. Kebanyakan terbitan yang diuji menunjukkan aktiviti perencatan yang lebih tinggi terhadap BChE berbanding AChE, walau bagaimanapun, secara keseluruhannya aktiviti perencatan adalah lemah. Sebaliknya, tiga terbitan (sebatian 3,6,9) menunjukkan aktiviti perencatan AChE yang tinggi dan bagus iaitu lebih daripada 50% perencatan pada 10 µg/mL. Antara sebatian tersebut, sebatian 9 yang mempunyai penukarganti etil pada kedudukan para benzena menunjukkan perencatan AChE yang paling kuat, dengan IC505.64 µg/mL. Simulasi doking protein ligan juga dilakukan untuk molekul yang paling aktif (sebatian 3,6,9).

 

Kata kunci: Asetilkolinesterase; butirilkolinesterase; doking molekul; terbitan eugenol

 

REFERENCES

Ali, T.B., Schleret, T.R., Reilly, B.M., Chen, W.Y. & Abagyan, R. 2015. Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada. PLoS ONE 10(12): e0144337.

Alqareer, A., Alyahya, A. & Andersson, L. 2006. The effect of clove and benzocaine versus placebo as topical anesthetic. Journal of Dentistry 34(10): 747-750.

Cheung, J., Gary, E.N., Shiomi, K. & Rosenberry, T.L. 2013. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Medicinal Chemistry Letters 4(11): 1091-1096.

da Silva, F.F.M., Monte, F.J.Q., de Lemos, T.L.G., Do Nascimento, P.G.G., de Medeiros Costa, A.K. & De Paiva, L.M.M. 2018. Eugenol derivatives: Synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chemistry Central Journal 12(1): 1-9.

Devi, K.P., Nisha, S.A., Sakthivel, R. & Pandian, S.K. 2010. Eugenol (an essential oil of clove) acts as an anti-bacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology 130(1): 107-115.

Feng, J. & Lipton, J.M. 1987. Eugenol: Antipyretic activity in rabbits. Neuropharmacology 26(12): 1775-1778.

Fichi, G., Flamini, G., Giovanelli, F., Otranto, D. & Perucci, S. 2007. Efficacy of an essential oil of Eugenia caryophllata against Psoroptes cuniculi. Experimental Parasitolog115(2): 168-172.

Goulet, F., Hélie, P. & Vachom, P. 2010. Eugenol anesthesia in African clawed frogs (Xenopuslaevis) of different body weights. Journal of the American Association for Laboratory Animal Science 49(4): 460-463.

Johny, A.K., Darre, M.J., Donoghue, A.M., Donoghue, D.J. & Venkitanarayanan, K. 2010. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. Journal of Applied Poultry Research 19(3): 237-244.

Jirovetz, L., Buchbauer, G., Stoilova, I., Stoyanova, A., Krastanov, A. & Schmidt, E. 2006. Chemical composition and antioxidant properties of clove leaf essential oil. Journal of Agriculture and Food Chemistry 54(17): 6303-6307.

Kang, S.H., Kim, M.K., Seo, D.K., Noh, D.J., Yang, J.O., Yoon, C. & Kim, G.H. 2009. Comparative repellency of essential oils against Culex pipiens pallens (Diptera: Culicidae). Journal of the Korean Society for Applied Biological Chemistry 52(4): 353-359.

Khaw, K.Y., Choi, S.B., Tan, S.C., Wahab, H.A., Chan, K.L. & Murugaiyah, V. 2014. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies. Phytomedicine 21(11): 1303-1309.

Lane, R.M., Potkin, S.G. & Enz, A. 2006. Targeting acetylcholinesterase and butyrylcholinesterasein dementia. International Journal of Neuropsychopharmacology 9(1): 101-124.

Li, W., Chen, H., He, Z., Han, C., Liu, S. & Li, Y. 2015. Influence of surfactant and oil composition on the stability and anti-bacterial activity of eugenol nanoemulsions. LWT-Food Science and Technology 62(1): 39-47.

Markowitz, K., Moynihan, M., Liu, M. & Kim, S. 1992. Biological properties of eugenol and zinc oxide-eugenol: A clinical oriented review. Oral Surgery, Oral Medical, Oral Pathology 73(6): 729-737.

Maurya, A.K., Agarwal, K., Gupta, A.C., Saxena, A., Nooreen, Z., Tandon, S., Ahmad, A. & Bawankule, D.U. 2018. Synthesis of eugenol derivatives and its anti-inflammatory activity against skin inflammation. Natural Product Research 34(2): 251-260.

Milczarek, G. & Ciszewski, A. 2012. Functionalized gold nanoparticles and films stabilized by in situ formed polyeugenol. Colloids and Surfaces B: Biointerfaces90: 53-57.

Nassar, M.I., Gaara, A.H., El-Ghorab, A.H., Farrag, A.R.H., Shen, H., Huq, E. & Mabry, T.J. 2007. Chemical constituents of clove (Syzygiumaromaticum, Fam. Myrtaceae) and their antioxidant activity. Revista Latinoamericana de Química35(3): 47-57.

Olea, A.F., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Silva-Moreno, E. & Carrasco, H. 2019.  Antifungal activity of eugenol derivatives against Botrytis cinerea. Molecules 24(7): 1239.

Rahim, N.H.C.A., Asari, A., Ismail, N. & Osman, H. 2017. Synthesis and antibacterial study of eugenol derivatives. Asian Journal of Chemistry 29(1): 22-26.

Thompson, P.A., Wright, D.E., Counsell, C.E. & Zajicek, J. 2012. Statistical analysis, trial design and duration in Alzheimer's disease clinical trials: A review. International Psychogeriatrics 24(5): 689-697.

Tippayatum, P. & Chonhenchob, V. 2007. Antibacterial activities of thymol, eugenol and nisin against some food spoilage bacteria. Agriculture and Natural Resources 41(5): 319-323.

Wagner, H., Jurcic, K. & Deininger, R. 1979. Antispasmodic activity of eugenol-esters and eugenol-ethers. Planta Medica 37(1): 9-14.

Zeringóta, V., Senra, T.O.S., Calmon, F., Maturano, R., Faza, A.P., Catunda-Junior, F.E., Monteiro, C.M., de Carvalho, M.G. & Daemon, E. 2013. Repellent activity of eugenol on larvae of Rhipicephalus microplus and Dermacentor nitens (Acari: Ixodidae). Parasitology Research 112(7): 2675-2679.

 

*Corresponding author; email: asnu@umt.edu.my

 

   

previous