Sains Malaysiana 50(4)(2021): 1077-1087
http://doi.org/10.17576/jsm-2021-5004-18
Prestasi Mekanik Korona Zirkonia Monolitik melalui Kaedah Unsur Terhingga
(Mechanical Performance of
Monolithic Zirconia Crown through Finite Element Methods)
MOHAMAD
NAJIB MOHD KASMANI, NOOR FAEIZAH AMAT, MEOR IQRAM MEOR AHMAD & ANDANASTUTI
MUCHTAR*
Department
of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 14 June 2020/Accepted: 11 September 2020
ABSTRAK
Dalam kajian ini, prestasi mekanik korona zirkonia monolitik bagi aplikasi dental dikenal pasti melalui analisis kaedah unsur terhingga (FEM) iaitu analisis terma dan analisis beban mekanikal. Zirkonia ialah bahan restorasi dental yang semakin meluas digunakan kerana mempunyai sifat bioserasi dan estetik yang baik berbanding bahan lain. Oleh itu, tujuan utama kajian ini adalah untuk mengenal pasti ketebalan korona zirkonia monolitik yang mampu menahan kitaran beban yang dikenakan, mengenal pasti kesan kitaran perubahan suhu pada struktur korona dengan ketebalan berbeza dan mengenal pasti perhubungan antara kitaran beban dan kitaran terma pada korona gigi zirkonia monolitik melalui simulasi FEM. Model 3D reka bentuk berbantu komputer (CAD) korona zirkonia monolitik dengan ketebalan 0.5, 0.6,
0.7, 0.8 dan 0.9 mm telah dijana melaluikaedah imbasan tomografi berkomputer. Kitaran beban yang dikenakan adalah 300, 400, 500,
600, 700 dan 800 N manakala kitaran terma pula dikenakan perubahan suhu antara 5 sehingga 55 °C. Justeru, gabungan analisis ini melalui simulasi FEM menggambarkan persekitaran mulut yang lebih realistik dan kompleks terhadap prestasi korona zirkonia monolitik bagi aplikasi dental. Hasil simulasi FEM mendapati bahawa ketebalan 0.8 dan 0.9 mm merupakan ketebalan yang paling selamat kerana menerima tekanan Von Mises paling sedikit berbanding ketebalan lain. Namun, ketebalan 0.5 mm juga masih mampu menahan beban mekanikal dan perubahan suhu yang dikenakan tetapi berisiko untuk mengalami keretakan.
Kata kunci: Beban kitaran; kaedah unsur terhingga; kesan ketebalan; korona dental; zirkonia monolitik
ABSTRACT
In this
study, the mechanical performance of monolithic zirconia crowns for dental
applications was identified through the finite element method (FEM) from
thermal and mechanical load analyses. Zirconia is a widely used dental
restoration material because of its high biological compatibility with the oral
cavity environment and good esthetic properties over other materials.
Therefore, this study aimed to identify the thickness of the monolithic
zirconia crowns that can withstand the load exerted, the effects of temperature
changes on crown structures with different thicknesses, and the relationship
between mechanical cyclic loads and thermal cyclic changes of the monolithic
zirconia crowns through FEM simulation. The 3D computer-aided design monolithic
zirconia crowns with a thickness of 0.5, 0.6, 0.7, 0.8, and 0.9 mm were
produced through computed tomography. Cyclic loads were applied between 300 and
800 N, whereas thermal cycles were subjected between 5 and 55 °C. Hence, the
combination of this analysis through FEM simulation will illustrate a realistic
and complex oral environment of the monolithic zirconia crown performance for
dental application. FEM simulation results showed that the thickness of 0.8 and
0.9 mm was the safest as the monolithic zirconia crowns with the aforementioned
thickness values received the minimum Von Mises stress compared with those with
other thickness values. However, monolithic zirconia crowns with the thickness
of 0.5 mm were still able to withstand the mechanical loads and temperature
changes that were imposed but were at risk for cracks.
Keywords:
Cyclic load; dental crown; finite element method; monolithic zirconia;
thickness effect
REFERENCES
Aboras, M., Muchtar, A., Husna, C., Yahaya, N. & Mah,
J.C.W. 2019. Enhancement of the microstructural and mechanical properties of
dental zirconia through combined optimized colloidal processing and cold
isostatic pressing. Ceramics International 45(2): 1831-1836.
Amat, N.F., Muchtar, A., Yew, H.Z.,
Amril, M.S. & Muhamud, R.L. 2020. Machinability of a newly developed
pre-sintered zirconia block for dental crown applications. Materials Letters 261(15): 126996.
Amat, N.F., Muchtar, A., Amril, M.S.,
Ghazali, M.J. & Yahaya, N. 2019. Effect of sintering temperature on the
aging resistance and mechanical properties of monolithic zirconia. Journal
of Materials Research and Technology 8(1):
1092-1101.
Amat, N.F., Muchtar, A., Amril, M.S.,
Ghazali, M.J. & Yahaya, N. 2018. Preparation of presintered zirconia blocks
for dental restorations through colloidal dispersion and cold isostatic
pressing. Ceramic International 44(6): 6409-6416.
Anami, L.C., da Costa Lima, J.M.,
Corazza, P.H., Yamamoto, E.T.C., Bottino, M.A. & Borges, A.L.S. 2015.
Finite element analysis of the influence of geometry and design of zirconia
crowns on stress distribution. Journal of Prosthodontics 24(2): 146-151.
Ban, S. 2008. Reliability and
properties of core materials for all-ceramic dental restorations. Japanese Dental Science Review 44(1):
3-21.
Bramanti, E., Cervino, G., Lauritano,
F., Fiorillo, L., D’Amico, C., Sambataro, S., Denaro, D., Famà, F., Ierardo,
G., Polimeni, A. & Cicciù, M. 2017. FEM and von mises analysis on
prosthetic crowns structural elements: Evaluation of different applied
materials. The Scientific World Journal 2017 (1029574): 1-7.
Carrabba, M., Keeling, A.J., Aziz,
A., Vichi, A., Fabian-Fonzar, R., Wood, D. & Ferrari, M. 2017. Translucent
zirconia in the ceramic scenario for monolithic restorations: A flexural
strength and translucency comparison test. Journal of Dentistry 60(2017): 70-76.
Dal Piva, A.M.D.O., Tribst, J.P.M.,
Borges, A.L.S., e Souza, R.O.D.A. & Bottino, M.A. 2018. CAD-FEA modeling
and analysis of different full crown monolithic restorations. Dental
Materials 34(9): 1342-1350.
Daud, M.H.M., Yew, H.Z., Zaman, J.Q.,
Yahaya, N. & Muchtar, A. 2017. Evaluation of shear bond strength of a novel
nano-zirconia and veneering ceramics. Ceramics International 43(1):
1272-1277.
Denry, I. & Kelly, J.R. 2008.
State of the art of zirconia for dental applications. Dental Materials 24(3): 299-307.
Flinn, B.D., Raigrodski, A.J., Mancl,
L.A., Toivola, R. & Kuykendall, T. 2017. Influence of aging on flexural
strength of translucent zirconia for monolithic restorations. The Journal of
Prosthetic Dentistry 117(2): 303-309.
Ha, S.R., Kim, S.H., Lee, J.B., Han,
J.S., Yeo, I.S., Yoo, S.H. & Kim, H.K. 2016. Biomechanical
three-dimensional finite element analysis of monolithic zirconia crown with
different cement thickness. Ceramics International 42(13): 14928-14936.
De Jager, N., Pallav, P. &
Feilzer, A.J. 2005. The influence of design parameters on the FEA-determined
stress distribution in CAD - CAM produced all-ceramic dental crowns. Dental Materials 21(3): 242-251.
Jang, G.W., Kim, H.S., Choe, H.C.
& Son, M.K. 2011. Fracture strength and mechanics of dental ceramic crown
with zirconia thickness. Procedia
Engineering 10(2011): 1556-1560.
Kohorst, P., Dittmer, M.P., Borchers,
L. & Stiesch-Scholz, M. 2008. Influence of cyclic fatigue in water on the
load-bearing capacity of dental bridges made of zirconia. Acta Biomaterialia 4(5): 1440-1447.
Lan, T.H., Liu, P.H., Chou, M.M.C.
& Lee, H.E. 2016. Fracture resistance of monolithic zirconia crowns with
different occlusal thicknesses in implant prostheses. The Journal of
Prosthetic Dentistry 115(1):
76-83.
Miura, S., Kasahara, S., Yamauchi, S.
& Egusa, H. 2018. Effect of finish line design on stress distribution in
bilayer and monolithic zirconia crowns: A three‐dimensional finite
element analysis study. European Journal of Oral Sciences 126(2):
159-165.
Mundhe, K., Jain, V., Pruthi, G.
& Shah, N. 2015. Clinical study to evaluate the wear of natural enamel
antagonist to zirconia and metal ceramic crowns. The Journal of Prosthetic
Dentistry 114(3): 358-363.
Nakamura, K., Ankyu, S., Nilson, F.,
Kanno, T., Niwano, Y., Steyern, P.V. & Örtengren, U. 2018. Critical
consideration on load-to-failure test for molithic zirconia molar crowns. Journal
of the Mechanical Behavior of Biomedical Materials 87(2018): 180-189.
Nakamura, K., Harada, A., Inagaki,
R., Kanno, T., Niwano, Y., Milleding, P. & Ortengen, U. 2015. Fracture
resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontologica Scandinavica 73(8):
602-608.
Nasrin, S., Katsube, N., Seghi, R.R.
& Rokhlin, S.I. 2018. Approximate relative fatigue life estimation methods
for thin-walled monolithic ceramic crowns. Dental Materials 34(5):
726-736.
Porojan, L., Topală, F.,
Porojan, S. & Savencu, C. 2017. Effect of frame design and veneering
material on biomechanical behavior of zirconia dental crowns veneered with
overpressing ceramics. Dental Materials 36(3): 275-281.
Preis, V., Grumser, K.,
Schneider-Feyrer, S., Behr, M. & Rosentritt, M. 2016. Cycle-dependent in
vitro wear performance of dental ceramics after clinical surface
treatments. Journal of the Mechanical Behavior of Biomedical Materials 53(2016): 49-58.
Rekow, E.D., Silva, N.R.F.A., Coelho,
P.G., Zhang, Y., Guess, P. & Thompson, V.P. 2011. Performance of dental
ceramics: Challenges for improvements. Journal of Dental Research 90(8): 937-952.
Wakabayashi, N., Murakami, N. &
Takaichi, A. 2018. Handbook of mechanics of materials. In Current
Applications of Finite Element Methods in Dentistry, edited by Hsueh, C.H.
Singapore: Springer. pp. 1-29.
Wang, F., Takahashi, H. &
Iwasaki, N. 2013. Translucency of dental ceramics with different thicknesses. Journal
of Prosthetic Dentistry 110(1):
14-20.
Zhang, Y., Mai, Z., Barani, A., Bush, M. & Lawn, B. 2016. Fracture-resistant monolithic dental crowns. Dental Materials 32(3): 442-449.
*Corresponding author; email: muchtar@ukm.edu.my
|