Sains Malaysiana 50(4)(2021): 1131-1142
http://doi.org/10.17576/jsm-2021-5004-23
Prediction of Epidemic
Trends in COVID-19 with Mann-Kendall and Recurrent Forecasting-Singular
Spectrum Analysis
(Ramalan Kecenderungan Wabak pada COVID-19 dengan Mann-Kendall dan Ramalan Berulang-Analisis Spektrum Tunggal)
SHAZLYN MILLEANA SHAHARUDIN1*, SHUHAIDA
ISMAIL2, MOHD SAIFUL SAMSUDIN3, AZMAN AZID4,
MOU LEONG TAN5 & MUHAMAD AFDAL AHMAD BASRI1
1Department of Mathematics, Faculty of Science and
Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak Darul Ridzuan, Malaysia
2Data Analytics, Sciences & Modelling (DASM), Department of
Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti
Tun Hussein Onn Malaysia, 86400
Batu Pahat, Johor Darul Takzim, Malaysia
3Faculty Business and Entrepreneurship, Universiti Malaysia Kelantan, Kampus Kota, Karung Berkunci 36 Pangkalan Chepa, 16100 Kota
Bharu, Kelantan Darul Naim,
Malaysia
4Faculty of
Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200
Besut, Terengganu Darul Iman, Malaysia
5Geography Section,
School of Humanities, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
Received: 18 June 2020/Accepted:
8 September 2020
ABSTRACT
Novel coronavirus also known as COVID-19 was first
discovered in Wuhan, China by end of 2019. Since then, the virus has claimed
millions of lives worldwide. In 29th April 2020, there were more
than 5,000 outbreak cases in Malaysia as reported by the Ministry of Health
Malaysia (MOHE). This study aims to evaluate the trend analysis of the COVID-19
outbreak using Mann-Kendall test, and predict the future cases of COVID-19 in
Malaysia using Recurrent Forecasting-Singular Spectrum Analysis (RF-SSA) model.
The RF-SSA model was developed to measure and predict daily COVID-19 cases in
Malaysia for the coming 10 days using previously-confirmed cases. A
Singular Spectrum Analysis-based forecasting model that discriminates noise in
a time series trend is introduced. The RF-SSA model assessment is based on the
World Health Organization (WHO) official COVID-19 data to predict the
daily confirmed cases after 29th April until 9th May, 2020. The preliminary results of Mann-Kendall test showed a declining trend
pattern for new cases during Restricted Movement Order (RMO) 3 compared to
RMO1, RMO2 and RMO4, with a dramatic increase in the COVID-19 outbreak during
RMO1. Overall, the RF-SSA has over-forecasted the cases by 0.36%. This
indicates RF-SSA’s competence to predict the impending number of COVID-19
cases. The proposed model predicted
that Malaysia would hit single digit in daily confirmed cased of COVID-19 by
early-June 2020. These findings have proven the capability of RF-SSA model in
apprehending the trend and predict the cases of COVID-19 with high accuracy. Nevertheless,
enhanced RF-SSA algorithm should to be developed for higher effectivity in
capturing any extreme data changes.
Keywords: COVID-19;
forecasting; Mann-Kendall test; recurrent forecasting (RF); singular
spectrum analysis (SSA)
ABSTRAK
Koronavirus
baru juga dikenali sebagai COVID-19 telah dilaporkan pertama kali di Wuhan, China
pada akhir 2019. Sejak itu, virus tersebut telah meragut berjuta-juta nyawa di
seluruh dunia. Pada 29 April 2020, terdapat lebih daripada 5,000 kes wabak di
Malaysia seperti yang dilaporkan oleh Kementerian Kesihatan Malaysia (KKM).
Kajian ini bertujuan untuk menilai analisis tren wabak COVID-19 menggunakan
ujian Mann-Kendall dan meramalkan kes COVID-19 yang akan datang di Malaysia
menggunakan model Ramalan Berulang-Analisis Spektrum Tunggal (RF-SSA). Model
RF-SSA dibangunkan untuk mengukur dan meramalkan kes COVID-19 harian di
Malaysia selama 10 hari akan datang dengan menggunakan kes yang telah disahkan
sebelumnya. Model ramalan berdasarkan Analisis Spektrum Tunggal yang
membezakan kebisingan dalam aliran siri masa diperkenalkan. Penilaian model
RF-SSA berdasarkan data rasmi COVID-19 oleh Organisasi Kesihatan Dunia (WHO)
untuk meramalkan kes-kes yang diselesaikan setiap hari selepas 29 April hingga
9 Mei 2020. Hasil awal ujian Mann-Kendall menunjukkan penurunan corak tren untuk
kes baru semasa Perintah Kawalan Pergerakan (RMO) 3 berbanding RMO1, RMO2 dan
RMO4, dengan peningkatan mendadak wabak COVID-19 semasa RMO1. Secara
keseluruhan, RF-SSA telah meramalkan kes sebanyak 0.36%. Ini menunjukkan
kecekapan RF-SSA untuk meramalkan jumlah kes COVID-19 yang akan datang. Model
yang dicadangkan juga meramalkan bahawa Malaysia akan mencapai angka satu digit
dalam kes COVID-19 yang disahkan setiap hari pada awal Jun 2020. Penemuan ini
telah membuktikan kemampuan model RF-SSA dalam menangkap tren dan meramalkan
kes COVID-19 dengan ketepatan tinggi. Walaupun begitu, algoritma RF-SSA harus
dipertingkatkan untuk keberkesanan yang lebih tinggi dalam menangkap perubahan
data yang melampau.
Kata kunci: Analisis spektrum tunggal (SSA); COVID-19; ramalan; ramalan berulang (RF); ujian Mann-Kendall
REFERENCES
Abdullah,
S., Mansor,
A.A., Napi, N.N.L.M., Mansor,
W.N.W., Ahmed, A.N., Ismail, M. & Ramly, Z.T.A.
2020. Air quality status during 2020 Malaysia Movement Control Order (RMO) due
to 2019 novel coronavirus (2019-nCoV) pandemic. Science of The Total
Environment 729: 139022.
Alexandrov, T., Golyandina,
N. & Spirov, A. 2008. Singular spectrum analysis
of gene expression profiles of early drosophila embryo: Exponential-in-distance
patterns. Research Letters in Signal
Processing 2008: Article ID. 825758.
Alonso, F.J., Salgado, D.R., Cuadrado, J. & Pintado, P. 2009. Automatic smoothing of
raw kinematics signals using SSA and cluster analysis. Euromech Solid Mechanics Conference Lisbon. pp. 1-9.
Boehmke,
B. & Greenwell, B 2019. Hands-On Machine Learning with R. Broken Sound. Parkway NW: Taylor &
Francis. pp. 1-15.
Bouza-Deaño,
R., Ternero-Rodríguez, M. & Fernández-Espinosa,
A.J. 2008. Trend study and assessment of surface water quality in the Ebro
River (Spain). Journal of Hydrology 361(3-4): 227-239.
Carvalho,
M.D. & Rua, A. 2014. Real-Time Nowcasting the
US Output GAP: Singular Spectrum Analysis at Work. Portugal: Banco De
Portugal.
Chau,
K.W. & Wu, C.L. 2010. Hybrid model coupled with singular spectrum analysis
for daily rainfall prediction. Journal of Hydroinformatics 12(4): 458-473.
Danilov, D. 1997. The Caterpillar method for time series
forecasting. In Principal Components of Time Series: The Caterpillar
Method. Russian: University of St. Petersburg.
Gilbert,
R.O. 1987. Statistical Methods for Environmental Pollution Monitoring.
New York: John Wiley & Sons. pp. 23-52.
Hamzah,
F.M., Saimi, F.M. & Jaafar, O. 2017. Identifying
the monotonic trend in climate change parameter in Kluang and Senai, Johor, Malaysia. Sains Malaysiana 46(10): 1735-1741.
Hassani,
H. 2007. Singular
spectrum analysis: Methodology and comparison. Journal of Data Science 5: 239-257.
Hassani,
H. & Zhigljavsky, A. 2009. Singular spectrum analysis: Methodology and application to
economics data. Journal of Systems Science and Complexity 22(3):
372-394.
Hossein, H., Mahdi, K. & Masoud, Y. 2017. An improved SSA forecasting result based on a
filtered recurrent forecasting algorithm. Statistics/Theory of Signals 355(9): 1026-1036.
Kannan, S., Ali, P.S.S., Sheeza, A. & Hemalatha, K. 2020. COVID-19 (Novel Coronavirus 2019)-recent trends. European Review for Medical and Pharmacological Sciences 24(4): 2006-2011.
Kendall,
M.G. 1975. Rank Correlation Measures. London: Charles Griffin. pp.
11-36.
Malaysian National Security Council
(NSC). 2020. Movement Control Order (RMO). https://www.mkn.gov.my/web/ms/COVID-19/. Accessed on 13 May 2020.
Mann,
H.B. 1945. Nonparametric tests against trend. Journal of the Econometric
Society 13(3): 245-259.
Malaysia Ministry of Health
Malaysia (MOH). 2020. Press Statement Updates on The Coronavirus Disease
2019 (COVID-19) Situation in Malaysia. https://www.moh.gov.my/index.php/pages/view/2019-ncov-wuhan-kenyataan-akhbar Accessed on 13 May 2020.
Ministry of Health Malaysia. 2019. Coronavirus Website. http:/covid19.moh.gov.my/.
Mondal, R.A., Kundu, S. &
Mukhopadhyay, A. 2012. Rainfall trend analysis by Mann-Kendall test: A case
study of North-Eastern part of Cuttack district, Orissa. International Journal of Geology 2: 70-78.
Muhammad Rezal Kamel Ariffin, Kathiresan Gopal, Isthrinayagy Krishnarajah, Iszuanie Syafidza Che Ilias, Mohd Bakri Adam, Noraishah Mohammad Sham, Jayanthi Arasan,
Nur Haizum Abd Rahman & Nur Sumirah Mohd Dom. 2020.
Malaysian COVID-19 Outbreak Data Analysis and Prediction. Institute for Mathematical
Research. http://einspem.upm.edu.my/covid19maths/file/Report_001%20v13.pdf.
Nishiura, H., Kobayashi, T., Yang,
Y., Hayashi, K., Miyama, T., Kinoshita, R., Linton, N.M., Jung, S.M., Yuan, B.,
Suzuki, A. & Akhmetzhanov, A. 2020. The rate of
under ascertainment of novel coronavirus (2019-nCoV) infection: Estimation
using Japanese passengers data on evacuation flights. Journal
of Clinical Medicine 9(2): 1-3.
Rodriguez-Aragon,
L.J. & Zhiglkavsky, A. 2010. Singular spectrum
analysis for image processing. Statistics
and Its Interface 3(3): 419-426.
Samsudin,
M.S., Khalit, S.I., Juahir,
H., Nasir, M., Fahmi, M., Kamarudin, M.K.A. & Lananan, F. 2017. Application of Mann-Kendall in analyzing water quality data trend at Perlis River,
Malaysia. International Journal on Advanced Science, Engineering and
Information Technology 7(1): 78-85.
Sen, P.K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63(324): 1379-1389.
Shaharudin,
S.M., Ahmad, N., Mohamed, N.S. & Aziz, N. 2020. Performance analysis and
validation of modified singular spectrum analysis based on simulation
torrential rainfall data. International
Journal on Advanced Science Engineering Information Technology 10(4):
1450-1456.
Shaharudin,
S.M., Ahmad, N. & Zainuddin, N.H. 2019. Modified
singular spectrum analysis in identifying rainfall trend over Peninsular
Malaysia. Indonesian Journal of
Electrical Engineering and Computer Science 15(1): 283-293.
Shaharudin,
S.M., Ahmad, N. & Yusof, F. 2015. Effect of window length with singular
spectrum analysis in extracting the trend signal of rainfall data. AIP Proceedings 1643(1): 321-326.
Suhartono, Ashari, D.E., Prastyo,
D.D., Kuswanto, H. & Lee, M.H. 2019. Deep neural
network for forecasting inflow and outflow in Indonesia. Sains Malaysiana 48(8): 1787-1798.
Tang, B., Wang, X., Li, Q., Bragazzi, N.L., Tang, S., Xiao, Y. & Wu, J. 2020.
Estimation of the transmission risk of the 2019-nCoV and its implication for
public health interventions. Journal of Clinical Medicine 9(2):
462-465.
Thompson, R.N. 2020. Novel
coronavirus outbreak in Wuhan, China, 2020: Intense surveillance is vital for
preventing sustained transmission in new locations. Journal of Clinical Medicine 9(2): 498-505.
Zhao, S., Musa, S.S., Lin, Q., Ran,
J., Yang, G., Wang, W., Lou, Y., Yang, L., Gao, D., He, D. & Wang, M.H.
2020. Estimating the unreported number of novel coronavirus (2019-nCoV) cases
in China in the first half of January 2020: A data-driven modelling analysis of
the early outbreak. Journal of Clinical
Medicine 9(2): 388-394.
*Corresponding author; email: shazlyn@fsmt.upsi.edu.my
|