Sains Malaysiana 50(4)(2021): 1157-1164

http://doi.org/10.17576/jsm-2021-5004-25

 

Analysis of Geomagnetic Ap Index on Worldwide Earthquake Occurrence using the Principal Component Analysis and Hierarchical Cluster Analysis

(Analisis Geomagnetik Indeks Ap pada Kejadian Gempa Bumi Serata Dunia menggunakan Analisis Prinsip Komponen dan Analisis Kelompok Hierarki)

 

NUR HIDAYAH ISMAIL1, NAZHATULSHIMA AHMAD1*, NUR ANISAH MOHAMED2 & MOHAMMAD REDZUAN TAHAR1

 

1Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 5 May 2020/Accepted: 9 September 2020

 

ABSTRACT

Geoeffective solar events, especially the coronal mass ejection (CME) and the high-speed solar wind (HSSW) will induce geomagnetic storm upon its arrival to Earth. The solar events could trigger an earthquake occurred during the arrival. In this study, the focus is on the proxy of the geoeffective solar events, which is the geomagnetic Ap index and the data of shallow worldwide earthquakes. The main objective was to investigate the impact of geomagnetic storms on the occurrences of earthquakes from 1994 to 2017 from a statistical perspective. The geomagnetic Ap index data was obtained from the Helmholtz-Centre Postdam - GFZ German Research Centre for Geosciences and the shallow worldwide earthquake data were from the United States Geological Survey (USGS) earthquake catalogue. The Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were used to analyse the data. Two groups were obtained from the PCA biplot: Group 1 - before the event (Day-4 to Day-1) and Group 2 - after the event group (Day 0 to Day+4). A two-cluster solution was obtained from the HCA, which shows that days before and after geostorm are divided into two main clusters. The statistical results show that earthquakes activity might have different behaviour before and after the geostorm occurred. In conclusion, the results emphasize that there are differences between days before and after the geostorm occurrence, hence, the solar influence upon earthquake occurrences cannot be neglected entirely.

 

Keywords: Ap index; earthquake; geomagnetic storm; solar activity

 

ABSTRAK

Aktiviti geokesan suria yang memberi kesan kepada bumi seperti letusan jirim korona dan angin suria berkelajuan tinggi akan menyebabkan ribut geomagnetik berlaku di Bumi. Aktiviti yang kuat dan geokesan mungkin boleh mencetuskan gempa bumi semasa ketibaannya. Fokus kajian ini adalah pada proksi aktiviti suria yang sampai ke bumi iaitu indeks geomagnetik Ap dan data gempa bumi cetek dari seluruh dunia. Objektif utama kajian ini adalah untuk mengkaji dari perspektif statistik kesan ribut geomagnetik terhadap kejadian gempa bumi tahun 1994 sehingga 2017. Data indeks geomagnetik Ap dimuat turun dari Helmholtz-Centre Postdam - GFZ German Research Centre for Geosciences dan data bagi gempa bumi pula diperoleh daripada katalog gempa bumi United States Geological Survey (USGS). Analisis komponen utama (PCA) dan analisis kelompok hierarki (HCA) telah digunakan untuk menganalisis data. Dua kumpulan diperoleh daripada dwiplot PCA: Kumpulan 1 - sebelum kejadian ribut geomagnetik (Hari-4 hingga Hari-1) dan Kumpulan 2 - selepas kejadian (Hari 0 hingga Hari+4). Melalui HCA, kelompok yang telah diperoleh menunjukkan bahawa hari sebelum dan selepas ribut geomagnetik terbahagi kepada dua kelompok utama. Hasil statistik menunjukkan bahawa aktiviti gempa bumi mungkin dipengaruhi oleh ribut geomagnetik. Kesimpulannya, kertas kajian ini menegaskan bahawa terdapat perbezaan dalam bilangan gempa bumi, sebelum dan selepas kejadian ribut geomagnetik. Oleh itu, pengaruh Matahari terhadap kejadian gempa bumi tidak boleh diabaikan.

 

Kata kunci: Aktiviti suria; gempa bumi; indeks Ap; ribut geomagnetik

 

REFERENCES

Adolfsson, A., Ackerman, M. & Brownstein, N.C. 2019. To cluster, or not to cluster: An analysis of clusterability methods.  Pattern Recognition 88: 13-26.

Alkarkhi, A.F.M. & Alqaraghuli, W.A.A. 2019. Easy Statistics for Food Science with R. Chennai, India: Elsevier, Inc. pp. 177-186.

Anagnostopoulos, G. & Papandreou, A. 2012. Space conditions during a month of a sequence of six M> 6.8 earthquakes ending with the tsunami of 26 December 2004. Natural Hazards & Earth System Sciences 12(5): 1551-1559.

Bartels, J. 1957. The technique of scaling indices K and Q of geomagnetic activity. In Annals of the International Geophysical Year. Vol. IV.  Fitzroy Square, London: Pergamon Press. pp. 215-226.

Chen, Y., Liu, L., Le, H. & Wan, W. 2014. Geomagnetic activity effect on the global ionosphere during the 2007-2009 deep solar minimum. Journal of Geophysical Research: Space Physics 119(5): 3747-3754.

Hansen, P. & Jaumard, B. 1997. Cluster analysis and mathematical programming.  Mathematical Programming 79(1): 191-215.

Herdiwijaya, D., Arif, J., Nurzaman, M.Z. & Astuti, I.K.D. 2015. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23. In AIP Conference Proceedings. AIP Publishing LLC. 1677(1): 050003.

Jolliffe, I.T. 2013. Principal Component Analysis. New York: Springer Science+Business Media, LLC. pp. 199-222.

Jolliffe, I.T. & Cadima, J. 2016. Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374(2065): 20150202.

Jusoh, M.H. 2013. Solar activity and seismicity. Kyushu University. Ph.D. Thesis (Unpublished).

Jusoh, M.H., Kasran, F.A.M., Liu, H. & Yumoto, K. 2015. Possible correlation between exogenous parameters and seismicity. In 7th International Conference on Recent Advances in Space Technologies (RAST). IEEE. pp. 525-529.

Kassambara, A. 2017. Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning. Volume 1 of multivariate analysis. STHDA. pp. 91-126.

Kaufman, L. & Rousseeuw, P.J. 2009. Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 126-163.

Larose, D.T. 2005. Discovering Knowledge in Data: An Introduction to Data Mining. Haboken, New Jersey: John Wiley & Sons, Inc. pp. 27-40.

Lever, J., Krzywinski, M. & Altman, N. 2017. Points of significance: Principal component analysis.  Nature Methods 14: 641-642.

Love, J.J. & Thomas, J.N. 2013. Insignificant solar-terrestrial triggering of earthquakes.  Geophysical Research Letters 40(6): 1165-1170.

Midya, S.K. & Gole, P.K. 2014. Trend of major earthquakes during the period 1900-2011 and its association with some solar and geomagnetic parameters.  Indian Journal of Physics 88(1): 1-4.

Mostapha, M., Abu Jahar, N., Azizan, K.A., Zakaria, S., Aizat, W.M. & Jaafar, S.N.S. 2018. Proteomic analysis of stored core oil palm trunk (COPT) sap identifying proteins related to stress, disease resistance and differential gene/protein expression. Sains Malaysiana 47(6): 1259-1268.

Nikouravan, B. 2012. Do solar activities cause local earthquakes? International Journal of Fundamental Physical Sciences 2(2): 17-20.

Nikouravan, B., Rawal, J.J., Sharifi, R. & Nikkhah, M. 2012. Probing relation between solar activities and seismicity. International Journal of the Physical Sciences 7(24): 3082-3088.

Paouris, E. & Mavromichalaki, H. 2017. Interplanetary coronal mass ejections resulting from earth-directed CMEs using SOHO and ACE combined data during solar cycle 23.  Solar Physics 292(2): 30.

Shestopalov, I.P. & Kharin, E.P. 2014. Relationship between solar activity and global seismicity and neutrons of terrestrial origin. Russian Journal of Earth Sciences 14(ES1002): 1-10.

Sukma, I. & Abidin, Z.Z. 2016. Study of seismic activity during the ascending and descending phases of solar activity. Indian Journal of Physics 91(16): 595-606.

Unal, Y., Kindap, T. & Karaca, M. 2003. Redefining the climate zones of Turkey using cluster analysis. International Journal of Climatology: A Journal of the Royal Meteorological Society 23(9): 1045-1055.

Urata, N., Duma, G. & Freund, F. 2018. Geomagnetic Kp index and earthquakes. Open Journal of Earthquake Research 7(1): 39-52.

Vargas, C.A.  & Kastle, E.D. 2012. Does the sun trigger earthquakes? Natural Science 4(8): 595-600.

Verbanac, G., Vršnak, B., Veronig, A. & Temmer, M. 2011. Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astronomy & Astrophysics 526: A20.

Wilks, D.S. 2011. Statistical Methods in the Atmospheric Sciences. 3rd ed. Oxford: Elsevier, Inc. pp. 603-616.

 

*Corresponding author; email: n_ahmad@um.edu.my

 

 

     

previous