Sains Malaysiana 50(4)(2021): 967-987
http://doi.org/10.17576/jsm-2021-5004-08
Phytochemical Profile, Antioxidant and Anti Proliferative
Studies in Different Extracts of Artocarpus kemando Miq. Bark
(Kajian Profil Fitokimia, Antioksidan dan Anti Proliferatif dalam Ekstrak Berbeza Batang Artocarpus kemando Miq.)
NOOR
SHAFIFIYAZ MOHD YAZID1*, NAJIHAH MOHD HASHIM1, HAPIPAH
MOHD ALI2 & RUSEA GO3
1Department of Pharmacy, Faculty of Medicine, University
of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department of Chemistry, Faculty of Science, University
of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
3Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received:
20 September 2019/Accepted: 22 September 2020
ABSTRACT
In this study, the stem bark of Artocarpus kemando was
used to find alternative antioxidants from natural sources with fewer side
effects. A. kemando was extracted successively using
hexane, chloroform and methanol solvents, and evaluated for antioxidant,
cytotoxic, and antiproliferative activities. The extracts were investigated for
determination of their total phenolic content (TPC) and total flavonoid content
(TFC). Then, the antioxidant activities were evaluated using chemical based
assays such as ferric reducing antioxidant power (FRAP), total antioxidant
capacity, radical scavenging of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH)
and 2,2'-azino-bis (3-ethylbenzothia zoline-6-sulphonic) (ABTS),
β-carotene-linoleic acid (BC) assay, oxygen radical absorbance capacity
(ORAC), and cell based assay. The cytotoxic study was done using four different
cell lines namely human estrogen receptor positive
(ER+) breast cancer cell line (MCF7), human ovarian cancer cell line (CAOV-3),
human promyelocytic leukemia cell line (HL60), and
normal immortalised human ovarian surface epithelial cell line (TI074), and
were evaluated using microculture tetrazolium salt (MTT) before morphological
change study was done on CAOV-3 cell. In this study, methanol extract displayed
the most promising antioxidant activity compared to other extracts when tested
with DPPH, FRAP, ABTS, TAOC, BC, ORAC, and cytoprotective assays. The
remarkable activity showed by the methanol extract might be due to its high content
of phenolic and flavonoid compounds at 855.5 ± 0.01 GAE µg/mL and 145.45 ± 0.06
QAE µg/mL, respectively. Nevertheless, the chloroform extract
displayed better scavenging activity compared to other extracts with IC50 value
of 618 ± 0.04 µg/mL in DPPH assay. Each extract was analysed using Gas
Chromatography Mass Spectrophotometry and the chemical constituents obtained were then analysed. In the
cytoprotective activity, the methanol extract showed a comparable cytoprotection with ascorbic acid against the free radicals
at the lowest effective concentration (EC50) value of 21.48 µg/mL. However, in the cytotoxicity study, only chloroform
extract displayed significant toxicity against the cancer cells with IC50 value
of 27.9 ± 0.03, 24.1 ± 0.02 and 9.0 ± 0.04 µg/mL after treatment at 24, 48, and
72 h, respectively. The chloroform extract of A. kemando was found capable of
inducing apoptosis as shown with cell membrane blebbing, chromatin condensation
and formation of apoptotic bodies. The results obtained from the study showed
that A. kemando bark could be a potential
antioxidant and antitumor agents particularly on human ovarian cancer cells.
Keywords: Antioxidant; antitumour; Artocapus kemando;
cytoprotective; Malaysia
ABSTRAK
Dalam kajian
ini, kulit batang Artocarpus kemando digunakan untuk mencari
antioksidan alternatif daripada sumber semula jadi dengan kesan sampingan yang
kurang. Kulit batang pokok A. kemando diekstrak secara
berturutan menggunakan pelarut heksana, kloroform dan metanol serta dinilai
untuk aktiviti antioksidan, sitotoksik dan antiproliferatif. Kesemua ekstrak
telah dikaji untuk penentuan kandungan jumlah fenolik (TPC) dan jumlah
flavonoid (TFC). Kemudian, aktiviti antioksidan telah dinilai melalui ujian
berasaskan kimia seperti keupayaan antioksida mengurangkan ferum (FRAP), jumlah
kapasiti antioksidan (TAOC), asai pengurangan radikal bebas menggunakan
2,2-difenil-1-pikrilhidrazil (DPPH) dan 2,2'-azino-bis
(3-etilbenzotiazolin-6-sulfonik) (ABTS), asai asid β-karoten-linoleik
(BC), kapasiti penyerapan oksigen radikal (ORAC), dan ujian berasaskan sel.
Kajian sitotoksik dilakukan menggunakan empat titisan sel yang berbeza iaitu
titisan sel kanser payudara positif reseptor estrogen (ER +) (MCF7), titisan
sel kanser ovari manusia (CAOV-3), titisan sel leukemia promoelositik manusia
(HL60) dan titisan sel normal permukaan epitelial ovari manusia (TI074), serta
dinilai menggunakan garam mikro tetrazolium (MTT) sebelum kajian perubahan
morfologi dilakukan terhadap sel CAOV-3. Dalam kajian ini, ekstrak metanol
menunjukkan aktiviti antioksidan yang paling baik berbanding ekstrak lain
apabila diuji dengan DPPH, FRAP, ABTS, TAOC, BC, ORAC dan asai sitoprotektif.
Aktiviti luar biasa yang ditunjukkan oleh ekstrak metanol mungkin disebabkan
oleh kandungan sebatian fenolik dan flavonoid yang tinggi iaitu masing-masing
855.5 ± 0.01 GAE μg/mL dan 145.45 ± 0.06 QAE μg/mL. Walau
bagaimanapun, ekstrak kloroform menunjukkan aktiviti pengurangan radikal yang
lebih baik berbanding ekstrak lain dengan nilai IC50 618 ± 0.04
μg/mL dalam asai DPPH. Setiap ekstrak telah dianalisis menggunakan Spektrofotometri Jisim Kromatografi Gas dan komponen kimia yang diperoleh kemudiannya dianalisis. Bagi aktiviti
sitoprotektif, ekstrak metanol menunjukkan keupayaan sitoperlindung setanding
dengan aktiviti asid askorbik terhadap radikal bebas pada nilai kepekatan
berkesan yang paling rendah (EC50) iaitu 21.48 μg/mL. Walau
bagaimanapun, dalam kajian sitotoksisiti, hanya ekstrak kloroform yang
menunjukkan ketoksikan signifikan terhadap sel kanser dengan nilai IC50 masing-masing sebanyak 27.9 ± 0.03, 24.1 ± 0.02 dan 9.0 ± 0.04 μg/mL
selepas rawatan pada 24, 48 dan 72 jam. Ekstrak chloroform A. kemando didapati berupaya
mengaruh apoptosis sebagaimana ditunjukkan dengan penunasan membran sel,
pengecutan kromatin dan pembentukan jasad apoptosis. Hasil yang diperoleh
daripada kajian menunjukkan bahawa batang pokok A. kemando berpotensi
sebagai agen antioksidan dan antitumor terutama ke atas sel
kanser ovari manusia.
Kata kunci: Antioksidan; antitumor; Artocarpus kemando; Malaysia; sitoperlindung
REFERENCES
Abu Bakar, M.F., Mohamed, M., Rahmat, A.
& Fry, J. 2009. Phytochemicals and antioxidant activity of different parts
of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chemistry 113: 479-483.
Altuntaş,
G. & Değer, Y. 2017. The effects of butylated hydroxyl toluene on the
total antioxidant status/total oxidant stress and biochemical parameters in
rats. World Journal of Pharmacy and
Pharmaceutical Science 6: 199-210.
Apak, R.,
Özyürek, M., Güçlü, K. &
Çapanoğlu, E. 2016. Antioxidant activity/capacity measurement:
Classification, physicochemical principles, mechanisms, and electron transfer
(ET)-based assays. Journal of
Agricultural and Food Chemistry 64: 997-1027.
Azwanida, N. 2015. A review on the extraction methods
use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants 4(196):
2167-0412.
Benzie, I.F. & Strain, J. 1996. The ferric reducing ability of
plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry 239: 70-76.
Beta, T.,
Naing, S.K., Nam, S., Mpofu, A. & Therrien, M. 2007. Antioxidant activity
in relationship to phenolic content of diverse food barley genotypes. In Antioxidant
Measurement and Application, edited by Fereidoon, S. & Chi, T.H.
Washington: American Chemical Society. pp. 242-254.
Brown,
J.M. & Attardi, L.D. 2005. The role of apoptosis in cancer development and
treatment response. Nature Reviews Cancer 5: 231-237.
Cao, G.
& Prior, R.L. 1998. Comparison of different analytical methods for
assessing total antioxidant capacity of human serum. Clinical Chemistry 44: 1309-1315.
Chan, K.,
Rajab, N.F., Ishak, M., Ali, A., Yusoff, K., Din, L. & Inayat-Hussain, S.
2006. Goniothalamin induces apoptosis in vascular smooth muscle cells. Chemico-Biological Interactions 159(2):
129-140.
Chang,
C.C., Yang, M.H., Wen, H.M. & Chern, J.C. 2002. Estimation of total
flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10:
178-182.
Dávalos,
A., Gómez-Cordovés, C. & Bartolomé, B. 2004. Extending applicability of the
oxygen radical absorbance capacity (ORAC− fluorescein) assay. Journal of Agricultural and Food Chemistry 52: 48-54.
David,
J.P., Meira, M., David, J.M., Brandão, H.N., Branco, A., de Fátima Agra, M.,
Barbosa, M.R.V., de Queiroz, L.P. & Giulietti, A.M. 2007. Radical
scavenging, antioxidant and cytotoxic activity of Brazilian caatinga plants. Fitoterapia 78: 215-218.
Dudonné,
S., Vitrac, X., Coutiere, P., Woillez, M. & Mérillon, J.M. 2009.
Comparative study of antioxidant properties and total phenolic content of 30
plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC
assays. Journal of Agricultural and Food
Chemistry 57: 1768-1774.
Ee,
G.C.L., Teo, S.H., Rahmani, M., Lim, C.K., Lim, Y.M. & Go, R. 2011.
Artomandin, a new xanthone from Artocarpus kemando (Moraceae). Natural Product Research 25: 995-1003.
Elmore,
S. 2007. Apoptosis: A review of programmed cell death. Toxicologic Pathology 35: 495-516.
Govindarajan,
R., Rastogi, S., Vijayakumar, M., Shirwaikar, A., Rawat, A.K.S., Mehrotra, S.
& Pushpangadan, P. 2003. Studies on the antioxidant activities of Desmodium
gangeticum. Biological and
Pharmaceutical Bulletin 26: 1424-1427.
Harish,
R. & Shivanandappa, T. 2006. Antioxidant activity and hepatoprotective
potential of Phyllanthus niruri. Food Chemistry 95: 180-185.
Hashim,
N.M., Rahmani, M., Ee, G.C.L., Sukari, M.A., Yahayu, M., Amin, M.A.M., Ali,
A.M. & Go, R. 2012. Antioxidant, antimicrobial and tyrosinase inhibitory
activities of xanthones isolated from Artocarpus obtusus FM Jarrett. Molecules 17: 6071-6082.
Hashim, N.M.,
Rahmani, M., Shamaun, S.S., Ee, G.C.L., Sukari, M.A., Ali, A.M. & Go, R.
2011. Dipeptide and xanthones from Artocarpus
kemando Miq. Journal of Medicinal
Plant Research 5: 4224-4230.
Incani,
A., Serra, G., Atzeri, A., Melis, M.P., Serreli, G., Bandino, G., Sedda, P.,
Campus, M., Tuberoso, C.I. & Deiana, M. 2016. Extra virgin olive oil
phenolic extracts counteract the pro-oxidant effect of dietary oxidized lipids
in human intestinal cells. Food and
Chemical Toxicology 90: 171-180.
Jagtap,
U. & Bapat, V. 2010. Artocarpus: A review of its traditional uses,
phytochemistry and pharmacology. Journal
of Ethnopharmacology 129: 142-166.
Jamil,
S., Sirat, H.M., Jantan, I., Aimi, N. & Kitajima, M. 2008. A new prenylated
dihydrochalcone from the leaves of Artocarpus lowii. Journal of Natural Medicines 62: 321-324.
Kannan,
R.R.R., Arumugam, R. & Anantharaman, P. 2010. In vitro antioxidant
activities of ethanol extract from Enhalus acoroides (LF) royle. Asian Pacific Journal of Tropical Medicine 3: 898-901.
Kassim,
N.K., Rahmani, M., Ismail, A., Sukari, M.A., Ee, G.C.L., Nasir, N.M. &
Awang, K. 2013. Antioxidant activity-guided separation of coumarins and lignan
from Melicope glabra (Rutaceae). Food Chemistry 139: 87-92.
Kawase,
T., Ichikawa, H., Ohta, T., Nozaki, N., Tashiro, F., Ohki, R. & Taya, Y.
2008. p53 target gene AEN is a nuclear exonuclease required for p53-dependent
apoptosis. Oncogene 27: 3797-3810.
Khan, M.,
Omoloso, A. & Kihara, M. 2003. Antibacterial activity of Artocarpus
heterophyllus. Fitoterapia 74:
501-505.
Lü, J.M.,
Lin, P.H., Yao, Q. & Chen, C. 2010. Chemical and molecular mechanisms of
antioxidants: Experimental approaches and model systems. Journal of Cellular and Molecular Medicine 14: 840-860.
Maeura,
Y., Weisburger, J.H. & Williams, G.M. 1984. Dose-dependent reduction of
N-2-fluorenylacetamide-induced liver cancer and enhancement of bladder cancer
in rats by butylated hydroxytoluene. Cancer Research 44: 1604-1610.
Matés,
J.M., Pérez-Gómez, C. & De Castro, I.N. 1999. Antioxidant enzymes and human
diseases. Clinical Biochemistry 32:
595-603.
Mittal,
A., Tandon, S., Singla, S.K. & Tandon, C. 2018. Modulation of lithiatic
injury to renal epithelial cells by aqueous extract of Terminalia arjuna. Journal of Herbal Medicine 13: 63-70.
Molyneux,
P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for
estimating antioxidant activity. Songklanakarin Journal of Science and Technology 26: 211-219.
Mosmann,
T. 1983. Rapid colorimetric assay for cellular growth and survival: Application
to proliferation and cytotoxicity assays. Journal of Immunological Methods 65: 55-63.
Murrell,
G.A., Francis, M.J. & Bromley, L. 1990. Modulation of fibroblast
proliferation by oxygen free radicals. Biochemical Journal 265: 659-665.
Naczk, M. & Shahidi, F. 2004. Extraction and analysis of
phenolics in food. Journal of
Chromatography A 1054: 95-111.
Nair,
V.D., Panneerselvam, R. & Gopi, R. 2012. Studies on methanolic extract of Rauvolfia species from Southern Western Ghats of India - In vitro antioxidant
properties, characterisation of nutrients and phytochemicals. Industrial Crops and Products 39:
17-25.
Oki, T.,
Masuda, M., Furuta, S., Nishiba, Y., Terahara, N. & Suda, I. 2002. Involvement
of anthocyanins and other phenolic compounds in radical‐scavenging
activity of purple‐fleshed sweet potato cultivars. Journal of Food Science 67: 1752-1756.
Pinchuk,
I., Shoval, H., Dotan, Y. & Lichtenberg, D. 2012. Evaluation of
antioxidants: Scope, limitations and relevance of assays. Chemistry and Physics of Lipids 165: 638-647.
Pinteus,
S., Silva, J., Alves, C., Horta, A., Fino, N., Rodrigues, A.I., Mendes, S.
& Pedrosa, R. 2017. Cytoprotective effect of seaweeds with high antioxidant
activity from the Peniche coast (Portugal). Food Chemistry 218: 591-599.
Richter,
C. 1993. Pro‐oxidants and mitochondrial Ca2+: Their
relationship to apoptosis and oncogenesis. FEBS Letters 325: 104-107.
San Tang,
K. 2014. Protective effect of arachidonic acid and linoleic acid on
1-methyl-4-phenylpyridinium-induced toxicity in PC12 cells. Lipids in Health and Disease 13: 1.
Sapei, L.
& Hwa, L. 2014. Study on the kinetics of vitamin C degradation in fresh
strawberry juices. Procedia Chemistry 9: 62-68.
Scalbert,
A. & Williamson, G. 2000. Dietary intake and bioavailability of
polyphenols. The Journal of Nutrition 130: 2073S-2085S.
Seo,
E.K., Lee, D., Shin, Y.G., Chai, H.B., Navarro, H.A., Kardono, L., Rahman, I.,
Cordell, G.A., Farnsworth, N.R. & Pezzuto, J.M. 2003. Bioactive prenylated
flavonoids from the stem bark of Artocarpus kemando. Archives of Pharmacal Research 26: 124-127.
Shahidi,
F. & Ho, C.T. 2007. Antioxidant
Measurement and Applications. Washington: American Chemical Society. pp.
2-7.
Shier, W.T., Abbas, H. & Mirocha, C. 1991. Toxicity of
the mycotoxins fumonisins B 1 and B 2 and Alternaria
alternata f. sp. lycopersici toxin (AAL) in cultured mammalian cells. Mycopathologia 116: 97-104.
Singleton,
V. & Rossi, J.A. 1965. Colorimetry of total phenolics with
phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.
Stoneman,
V.E. & Bennett, M.R. 2004. Role of apoptosis in atherosclerosis and its
therapeutic implications. Clinical
Science 107: 343-354.
Sun, L.,
Zhang, J., Lu, X., Zhang, L. & Zhang, Y. 2011. Evaluation to the
antioxidant activity of total flavonoids extract from persimmon (Diospyros
kaki L.) leaves. Food and Chemical
Toxicology 49: 2689-2696.
Tabera, J., Guinda, Á., Ruiz-Rodríguez, A., Señoráns, F.J.,
Ibáñez, E., Albi, T. & Reglero, G. 2004. Countercurrent supercritical fluid
extraction and fractionation of high-added-value compounds from a hexane
extract of olive leaves. Journal of
Agricultural and Food Chemistry 52: 4774-4779.
Teo, S.,
Go, R., Lim, C. & Lim, Y. 2012. Free radical scavenging effect of Artocarpus
kemando and Artocarpus odoratissimus: Structure-activity
relationship of flavonoid derivatives. Asian Journal of Chemistry 24: 231.
Tomosaka,
H., Chin, Y.W., Salim, A.A., Keller, W.J., Chai, H. & Kinghorn, A.D. 2008.
Antioxidant and cytoprotective compounds from Berberis vulgaris (barberry). Phytotherapy Research 22:
979-981.
Valko,
M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. & Telser, J. 2007.
Free radicals and antioxidants in normal physiological functions and human
disease. The International Journal of
Biochemistry & Cell Biology 39: 44-84.
Videla,
L.A. 2010. Cytoprotective and suicidal signaling in oxidative stress. Biological Research 43: 363-369.
Wei,
B.L., Weng, J.R., Chiu, P.H., Hung, C.F., Wang, J.P. & Lin, C.N. 2005.
Antiinflammatory flavonoids from Artocarpus heterophyllus and Artocarpus
communis. Journal of Agricultural and
Food Chemistry 53: 3867-3871.
Witschi,
H., Malkinson, A.M. & Thompson, J.A. 1989. Metabolism and pulmonary
toxicity of butylated hydroxytoluene (BHT). Pharmacology & Therapeutics 42: 89-113.
Wong,
S.P., Leong, L.P. & Koh, J.H.W. 2006. Antioxidant activities of aqueous
extracts of selected plants. Food
Chemistry 99: 775-783.
Xu, W.,
Saiki, S., Myojin, T., Liu, Y., Zhu, B., Murata, Y., Ashida, H., Tsunenaga, M.
& Nakamura, Y. 2018. Lycii fructus extract ameliorates hydrogen
peroxide-induced cytotoxicity through indirect antioxidant action. Bioscience, Biotechnology, and Biochemistry 82(10): 1812-1820.
Zubia,
M., Fabre, M.S., Kerjean, V., Le Lann, K., Stiger-Pouvreau, V., Fauchon, M.
& Deslandes, E. 2009. Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chemistry 116: 693-701.
*Corresponding author; email: shafifiyaz63@gmail.com
|