Sains Malaysiana 50(5)(2021): 1221-1232
http://doi.org/10.17576/jsm-2021-5005-03
Penilaian
Sistem Suntikan Gas Biohidrogen menerusi Tetapan Arduino menggunakan Kultur
Mikroalga Tempatan melalui Kaedah Fermentasi Fotosintesis dan Gelap
(Assessment
of Biohydrogen Injection System through Arduino Setting in Photosynthetic and
Dark Fermentation by Local Microalgae Culture)
KAMRUL FAKIR KAMARUDIN1,2,
NUR FARAH MOHD SHUKURI3,4, NAZLINA HAIZA MOHD YASIN5*,
SURESH THANAKODI6,7, AZIZI MISKON3 & MOHD SOBRI TAKRIFF1
1Jabatan
Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Fakulti Sains dan Teknologi Industri, Universiti Malaysia Pahang, Lebuhraya Tun
Razak, 26300 Kuantan, Pahang Darul Makmur, Malaysia
3Jabatan
Kejuruteraan Elektrikal dan Elektronik, Fakulti Kejuruteraan, Universiti
Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur, Wilayah
Persekutuan, Malaysia
4Institut
Penerbangan 1, Kolej Tentera Udara, 06200 Kepala Batas, Alor Setar, Kedah Darul
Aman, Malaysia
5Jabatan
Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
6Jabatan
Sains dan Teknologi Maritim, Fakulti Sains dan Teknologi Pertahanan, Universiti
Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur, Wilayah
Persekutuan, Malaysia
7Pusat Kecemerlangan Penyelidikan Maritim (MAREC), Universiti
Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur, Wilayah
Persekutuan, Malaysia
Received: 3 October 2019/Accepted: 3
October 2020
ABSTRAK
Biohidrogen
(gas hidrogen yang terhasil melalui kaedah biologi) ialah salah satu sumber
tenaga mampan yang boleh diaplikasi untuk penjanaan elektrik. Hasil tindak
balas pembakaran gas hidrogen menghasilkan air tanpa pelepasan gas rumah hijau.
Mikroalga merupakan salah satu mikroorganisma yang boleh menghasilkan
biohidrogen secara fermentasi fotosintesis dan gelap. Dalam kajian ini,
mikroalga tempatan, Chlamydomonas sp. UKM6 telah digunakan untuk menghasilkan biohidrogen menggunakan
kedua-dua kaedah fermentasi dalam keadaan anaerobik. Fermentasi fotosintesis
dijalankan menggunakan kultur UKM6 yang hidup di bawah sinaran cahaya manakala
fermentasi gelap dijalankan dengan menggunakan biojisim UKM6 yang diinokulasi
dengan enapcemar daripada efluen kilang kelapa sawit (POME). Gas hidrogen yang
terhasil disuntik secara automatik ke dalam sistem sel bahan api menggunakan Arduino
Uno yang telah dibangunkan. Dengan menggunakan data yang dipaparkan daripada
program tetapan Arduino, biojisim UKM6 dalam fermentasi gelap menghasilkan gas
hidrogen dan nilai voltan purata tertinggi masing-masing pada kepekatan 30.89
ppm dan 0.92 mV. Berdasarkan keputusan yang diperoleh, dapat disimpulkan bahawa
mikroalga berpotensi menjana tenaga melalui penghasilan biohidrogen yang dapat
terus dianalisa menggunakan teknologi sel bahan api. Sistem ini jelas dapat dapat
diperbaiki lagi pada masa akan datang untuk mengukur penjanaan tenaga secara
terus dengan berkesan.
Kata kunci: Arduino uno;
biohidrogen; Chlamydomonas sp.; sel bahan api
ABSTRACT
Biohydrogen (a hydrogen gas produced
by biological methods) is one of the most sustainable sources of energy for
electricity generation. Hydrogen gas combustion produces only water without the
release of greenhouse gases emission. Microalgae are the microorganisms that
can produce biohydrogen through photosynthesis and dark fermentation. In this
study, the local microalgae isolate, Chlamydomonas sp. UKM6 has been used to generate biohydrogen using both fermentation
methods under anaerobic conditions. Photosynthesis fermentation was carried out
using the live culture of UKM6 under continuous illumination while dark
fermentation was carried out using the biomass of UKM6 with the palm oil mill
effluent (POME) sludge as an inoculum. The resulting hydrogen gas is
automatically injected into the fuel cell system using the newly developed
Arduino Uno. Using data presented from the Arduino settings program, the
biomass of UKM6 in dark fermentation produces the highest hydrogen gas and
voltage at 30.89 ppm and 0.92 mV, respectively. Based on the results, it can be
concluded that microalgae have the potential to generate energy through the
production of biohydrogen which can be further analyzed using fuel cell
technology. This system can be further improved in the future to measure energy
generated directly and effectively.
Keywords: Arduino uno; biohydrogen; Chlamydomonas
sp.; fuel cell
REFERENCES
Anandraj, A., White, S. &
Mutanda, T. 2019. Photosystem I fluorescence as a physiological indicator of
hydrogen production in Chlamydomonas
reinhardtii. Bioresource Technology 273:
313-319.
Anwar, M., Lou, S., Chen, L., Li, H.
& Hu, Z. 2019. Recent advancement and strategy on bio-hydrogen production
from photosynthetic microalgae. Bioresource
Technology 292: 121972.
Balachandar, G., Khanna, N. &
Das, D. 2013. Biohydrogen production from organic wastes by dark fermentation.
In Biohydrogen, edited by Pandey, A.,
Chang, J.S., Hallenbeck, P. & Larroche, C. Burlington, USA: Elsevier, Inc.
pp. 103-144.
Barbir, F., Gorgun, H. & Wang,
X. 2005. Relationship between pressure drop and cell resistance as a diagnostic
tool for PEM feul cells. Journal of Power
Sources 141(1): 96-101.
Becker, W. 2007. Microalgae in human
and animal nutrition. Handbook of
Microalgae Cultivation. pp. 312-351.
Bisták, P. 2019. Arduino support for
personalized learning of controil theory basics. IFAC-PapersOnLine 52(27): 217-221.
Bligh, E.G. & Dyer, W.J. 1959. A
rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8): 911-917.
Bolatkhan, K., Kossalbayev, B.D.,
Zayadan, B.K., Tomo, T., Veziroglu, T.N. & Allakhverdiev, S.I. 2019.
Hydrogen production from phototrophic microorganisms: Reality and perspectives. International Journal of Hydrogen Energy 44(12): 5799-5811.
Bradford, M.M. 1976. Rapid and
sensitive method for the quantification microgram quantities of protein
utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254.
Briguglio, N. & Antonucci, V.
2016. Hydrogen production: Overview of PEM electrolysis for hydrogen
production. In PEM Electrolysis for
Hydrogen Production: Principles and Applications, edited by Bessarabov, D.,
Wang, H., Li, H. & Zhao, N. Boca Raton: CRC Press. pp. 1-3.
Dubois, M., Gilles, K.A., Hamilton,
J.K., Rebers, P.A. & Smith, F. 1956. Colorimetric method for determination
of sugars and related substances. Analytical
Chemistry 28(3): 350-356.
Guvelioglu, G.H. & Stenger, H.G.
2007. Flow rate and hunidification effects on a PEM fuel cell performance and
operation. Journal of Power Sources 163(2): 882-891.
Hariz, H.B., Takriff, M.S.,
Ba-Abbad, M.M., Mohd Yasin, N.H. & Takriff, M.S. 2018. CO2 fixation capability of Chlorella sp.
and its use in treating agricultural wastewater. Journal of Applied Phycology 30(6): 3017-3027.
Hazman, N.A.S., Mohd Yasin, N.H.,
Takriff, M.S., Hasan, H.A., Kamarudin, K.F. & Hakimi, N.I.N.M. 2018.
Integrated palm oil mill effluent treatment and CO2 sequestration by
microalgae. Sains Malaysiana 47(7):
1455-1464.
Jones, C.S. & Mayfield, S.P.
2012. Algae biofuels: Versatility for the future of bioenergy. Current Opinion in Biotechnology 23(3):
346-351.
Kumar, M.D., Kaliappan, S.,
Gopikumar, S., Zhen, G. & Banu, JR. 2019. Synergetic pretreatment of algal
biomass through H2O2 induced microwave in acidic
condition for biohydrogen production. Fuel 253: 833-839.
Liu, C.H., Chang, C.Y., Cheng, C.L.,
Lee, D.J. & Chang, J.S. 2012. Fermentative hydrogen production by Clostridium butyricum CGS5 using
carbohydrate-rich microalgal biomass as feedstock. International Journal of Hydrogen Energy 37(20): 15458-15464.
Minhat, Z., Rahaman, M.S.A.,
Takriff, M.S. & Kofli, N.T. 2016. Differentiation of biomass composition
between isolated and commercial strains of microalgae. Journal of Engineering Science and Technology 11(5): 737-744.
Miskon, A., Thanakodi, S., Nazar,
N.S.M., Chong, M.W.K., Takriff, M.S., Norzali, A.A. & Tawil, S.N.M. 2016.
Feasibility studies of vortex flow impact on the proliferation of algae in
hydrogen production for fuel cell applications. IOP Conference Series: Material Science and Engineering 160: 1-8.
Mohd Yasin, N.H., Ikegami, A., Wood,
T.K., Yu, C.P., Haruyama, T., Takriff, M.S. & Maeda, T. 2017. Oceans as
bioenergy pools for methane production using activated methanogens in waste
sewage sludge. Applied Energy 202(15): 399-407.
Mohd Yasin, N.H., Abd Rahman, N.A.,
Man, H.C, Mohd Yusoff, M.Z. & Hassan, M.A. 2011. Microbial characterization
of hydrogen-producing bacteria in fermented food waste at different pH values. International Journal of Hydrogen Energy 36(16): 9571-9580.
Oltean, S.E. 2019. Mobile robot
platform with Arduino Uno and Raspberrry Pi for autonomous navigation. In The 12th International Conference
Interdisciplinarity in Engineering. Procedia
Manufacturing. 32: 572-577.
Oussalem, O., Kourchi, M., Rachday,
A., Ajaamoum, M., Idadoub, H. & Jenkal, S. 2019. A low cost controller of
PV system based on Arduino board and INC algorithm. Materials Today: Proceedings 24: 104-109.
Templeton, D.W., Quinn, M., Van
Wychen, S., Hyman, D. & Laurens, L.M.L. 2012. Separation and quantification
of microalgal carbohydrates. Journal of
Chromatography A 1270: 225-234.
Uggetti, E., Sialve, B., Latrille,
E. & Steyer, J.P. 2014. Anaerobic digestate as substrate for microalgae
culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology 152: 437-443.
Wahdame, B., Candusso, D. &
Kauffmann, J.M. 2006. Study of gas pressure and flow rate influences on a 500 W
PEM fuel cell,thanks to the experimental design methodology. Journal of Power Sources 156(1): 92-99.
Yang, Z., Guo, R., Xu, X., Fan, X.
& Luo, S. 2011. Hydrogen and methane production from lipid-extracted
microalgal biomass residues. International
Journal of Hydrogen Energy 36(5): 3465-3470.
Yang, S., Liu, Y., Wu, N., Zhang,
Y., Svoronos, S. & Pullammanappallil, P. 2019. Low-cost, Arduino-based,
portable device for measurement of methane composition in biogas. Renewable Energy 138: 224-229.
*Corresponding author; email:
nazlinayasin@ukm.edu.my
|