Sains Malaysiana 50(5)(2021): 1221-1232

http://doi.org/10.17576/jsm-2021-5005-03

 

Penilaian Sistem Suntikan Gas Biohidrogen menerusi Tetapan Arduino menggunakan Kultur Mikroalga Tempatan melalui Kaedah Fermentasi Fotosintesis dan Gelap

(Assessment of Biohydrogen Injection System through Arduino Setting in Photosynthetic and Dark Fermentation by Local Microalgae Culture)

 

KAMRUL FAKIR KAMARUDIN1,2, NUR FARAH MOHD SHUKURI3,4, NAZLINA HAIZA MOHD YASIN5*, SURESH THANAKODI6,7, AZIZI MISKON3 & MOHD SOBRI TAKRIFF1

 

1Jabatan Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Fakulti Sains dan Teknologi Industri, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang Darul Makmur, Malaysia

 

3Jabatan Kejuruteraan Elektrikal dan Elektronik, Fakulti Kejuruteraan, Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

4Institut Penerbangan 1, Kolej Tentera Udara, 06200 Kepala Batas, Alor Setar, Kedah Darul Aman, Malaysia

 

5Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

6Jabatan Sains dan Teknologi Maritim, Fakulti Sains dan Teknologi Pertahanan, Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

7Pusat Kecemerlangan Penyelidikan Maritim (MAREC), Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

Received: 3 October 2019/Accepted: 3 October 2020

 

ABSTRAK

Biohidrogen (gas hidrogen yang terhasil melalui kaedah biologi) ialah salah satu sumber tenaga mampan yang boleh diaplikasi untuk penjanaan elektrik. Hasil tindak balas pembakaran gas hidrogen menghasilkan air tanpa pelepasan gas rumah hijau. Mikroalga merupakan salah satu mikroorganisma yang boleh menghasilkan biohidrogen secara fermentasi fotosintesis dan gelap. Dalam kajian ini, mikroalga tempatan, Chlamydomonas sp. UKM6 telah digunakan untuk menghasilkan biohidrogen menggunakan kedua-dua kaedah fermentasi dalam keadaan anaerobik. Fermentasi fotosintesis dijalankan menggunakan kultur UKM6 yang hidup di bawah sinaran cahaya manakala fermentasi gelap dijalankan dengan menggunakan biojisim UKM6 yang diinokulasi dengan enapcemar daripada efluen kilang kelapa sawit (POME). Gas hidrogen yang terhasil disuntik secara automatik ke dalam sistem sel bahan api menggunakan Arduino Uno yang telah dibangunkan. Dengan menggunakan data yang dipaparkan daripada program tetapan Arduino, biojisim UKM6 dalam fermentasi gelap menghasilkan gas hidrogen dan nilai voltan purata tertinggi masing-masing pada kepekatan 30.89 ppm dan 0.92 mV. Berdasarkan keputusan yang diperoleh, dapat disimpulkan bahawa mikroalga berpotensi menjana tenaga melalui penghasilan biohidrogen yang dapat terus dianalisa menggunakan teknologi sel bahan api. Sistem ini jelas dapat dapat diperbaiki lagi pada masa akan datang untuk mengukur penjanaan tenaga secara terus dengan berkesan.

 

Kata kunci: Arduino uno; biohidrogen; Chlamydomonas sp.; sel bahan api

 

ABSTRACT

Biohydrogen (a hydrogen gas produced by biological methods) is one of the most sustainable sources of energy for electricity generation. Hydrogen gas combustion produces only water without the release of greenhouse gases emission. Microalgae are the microorganisms that can produce biohydrogen through photosynthesis and dark fermentation. In this study, the local microalgae isolate, Chlamydomonas sp. UKM6 has been used to generate biohydrogen using both fermentation methods under anaerobic conditions. Photosynthesis fermentation was carried out using the live culture of UKM6 under continuous illumination while dark fermentation was carried out using the biomass of UKM6 with the palm oil mill effluent (POME) sludge as an inoculum. The resulting hydrogen gas is automatically injected into the fuel cell system using the newly developed Arduino Uno. Using data presented from the Arduino settings program, the biomass of UKM6 in dark fermentation produces the highest hydrogen gas and voltage at 30.89 ppm and 0.92 mV, respectively. Based on the results, it can be concluded that microalgae have the potential to generate energy through the production of biohydrogen which can be further analyzed using fuel cell technology. This system can be further improved in the future to measure energy generated directly and effectively.

 

Keywords: Arduino uno; biohydrogen; Chlamydomonas sp.; fuel cell

 

REFERENCES

Anandraj, A., White, S. & Mutanda, T. 2019. Photosystem I fluorescence as a physiological indicator of hydrogen production in Chlamydomonas reinhardtii. Bioresource Technology 273: 313-319.

Anwar, M., Lou, S., Chen, L., Li, H. & Hu, Z. 2019. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresource Technology 292: 121972.

Balachandar, G., Khanna, N. & Das, D. 2013. Biohydrogen production from organic wastes by dark fermentation. In Biohydrogen, edited by Pandey, A., Chang, J.S., Hallenbeck, P. & Larroche, C. Burlington, USA: Elsevier, Inc. pp. 103-144.

Barbir, F., Gorgun, H. & Wang, X. 2005. Relationship between pressure drop and cell resistance as a diagnostic tool for PEM feul cells. Journal of Power Sources 141(1): 96-101.

Becker, W. 2007. Microalgae in human and animal nutrition. Handbook of Microalgae Cultivation. pp. 312-351.

Bisták, P. 2019. Arduino support for personalized learning of controil theory basics. IFAC-PapersOnLine 52(27): 217-221.

Bligh, E.G. & Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8): 911-917.

Bolatkhan, K., Kossalbayev, B.D., Zayadan, B.K., Tomo, T., Veziroglu, T.N. & Allakhverdiev, S.I. 2019. Hydrogen production from phototrophic microorganisms: Reality and perspectives. International Journal of Hydrogen Energy 44(12): 5799-5811.

Bradford, M.M. 1976. Rapid and sensitive method for the quantification microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254.

Briguglio, N. & Antonucci, V. 2016. Hydrogen production: Overview of PEM electrolysis for hydrogen production. In PEM Electrolysis for Hydrogen Production: Principles and Applications, edited by Bessarabov, D., Wang, H., Li, H. & Zhao, N. Boca Raton: CRC Press. pp. 1-3.

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3): 350-356.

Guvelioglu, G.H. & Stenger, H.G. 2007. Flow rate and hunidification effects on a PEM fuel cell performance and operation. Journal of Power Sources 163(2): 882-891.

Hariz, H.B., Takriff, M.S., Ba-Abbad, M.M., Mohd Yasin, N.H. & Takriff, M.S. 2018. CO2 fixation capability of Chlorella sp. and its use in treating agricultural wastewater. Journal of Applied Phycology 30(6): 3017-3027.

Hazman, N.A.S., Mohd Yasin, N.H., Takriff, M.S., Hasan, H.A., Kamarudin, K.F. & Hakimi, N.I.N.M. 2018. Integrated palm oil mill effluent treatment and CO2 sequestration by microalgae. Sains Malaysiana 47(7): 1455-1464.

Jones, C.S. & Mayfield, S.P. 2012. Algae biofuels: Versatility for the future of bioenergy. Current Opinion in Biotechnology 23(3): 346-351.

Kumar, M.D., Kaliappan, S., Gopikumar, S., Zhen, G. & Banu, JR. 2019. Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel 253: 833-839.

Liu, C.H., Chang, C.Y., Cheng, C.L., Lee, D.J. & Chang, J.S. 2012. Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. International Journal of Hydrogen Energy 37(20): 15458-15464.

Minhat, Z., Rahaman, M.S.A., Takriff, M.S. & Kofli, N.T. 2016. Differentiation of biomass composition between isolated and commercial strains of microalgae. Journal of Engineering Science and Technology 11(5): 737-744.

Miskon, A., Thanakodi, S., Nazar, N.S.M., Chong, M.W.K., Takriff, M.S., Norzali, A.A. & Tawil, S.N.M. 2016. Feasibility studies of vortex flow impact on the proliferation of algae in hydrogen production for fuel cell applications. IOP Conference Series: Material Science and Engineering 160: 1-8.

Mohd Yasin, N.H., Ikegami, A., Wood, T.K., Yu, C.P., Haruyama, T., Takriff, M.S. & Maeda, T. 2017. Oceans as bioenergy pools for methane production using activated methanogens in waste sewage sludge. Applied Energy 202(15): 399-407.

Mohd Yasin, N.H., Abd Rahman, N.A., Man, H.C, Mohd Yusoff, M.Z. & Hassan, M.A. 2011. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. International Journal of Hydrogen Energy 36(16): 9571-9580.

Oltean, S.E. 2019. Mobile robot platform with Arduino Uno and Raspberrry Pi for autonomous navigation. In The 12th International Conference Interdisciplinarity in Engineering. Procedia Manufacturing. 32: 572-577.

Oussalem, O., Kourchi, M., Rachday, A., Ajaamoum, M., Idadoub, H. & Jenkal, S. 2019. A low cost controller of PV system based on Arduino board and INC algorithm. Materials Today: Proceedings 24: 104-109.

Templeton, D.W., Quinn, M., Van Wychen, S., Hyman, D. & Laurens, L.M.L. 2012. Separation and quantification of microalgal carbohydrates. Journal of Chromatography A 1270: 225-234.

Uggetti, E., Sialve, B., Latrille, E. & Steyer, J.P. 2014. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology 152: 437-443.

Wahdame, B., Candusso, D. & Kauffmann, J.M. 2006. Study of gas pressure and flow rate influences on a 500 W PEM fuel cell,thanks to the experimental design methodology. Journal of Power Sources 156(1): 92-99.

Yang, Z., Guo, R., Xu, X., Fan, X. & Luo, S. 2011. Hydrogen and methane production from lipid-extracted microalgal biomass residues. International Journal of Hydrogen Energy 36(5): 3465-3470.

Yang, S., Liu, Y., Wu, N., Zhang, Y., Svoronos, S. & Pullammanappallil, P. 2019. Low-cost, Arduino-based, portable device for measurement of methane composition in biogas. Renewable Energy 138: 224-229.

 

*Corresponding author; email: nazlinayasin@ukm.edu.my

   

 

previous