Sains Malaysiana 50(5)(2021): 1267-1275
http://doi.org/10.17576/jsm-2021-5005-07
Biocontrol Potential of Neem
Leaf-Based Vermicompost as Indicated by Chitinase, Protease and
β-1,3-Glucanase Activity
(Potensi Biokawalan Vermikompos Berasaskan Daun Semambu seperti yang Ditunjukkan oleh Aktiviti Kitinase, Protease dan β-1,3-Glucanase)
LOH KHYE ER1, NOR
AZWADY ABDUL AZIZ2*, MUSKHAZLI MUSTAFA2 & INTAN
SAFINAR ISMAIL3
1Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting
Kelang Setapak, 53300 Kuala Lumpur, Federal
Territory, Malaysia
2Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 20 May 2020/Accepted: 7 October 2020
ABSTRACT
The rising concern regarding
the negative impact of synthetic pesticides has led to the search for
alternative means of pest control. Vermicomposting the mixture of oil palm
empty fruit bunch and neem (Azadirachta indica) leaves, with the latter known to have
pesticidal value, is therefore of great interest and significance to be
studied. The present study was conducted to evaluate the chitinase, protease
and β-1,3-glucanase activity of neem leaf-based vermicompost as an
indication of its biocontrol properties. The total microbial population of
different composition of the vermicompost was also investigated. The results
showed that at 10% neem composition, an increment in microbial population,
chitinase and protease activities was observed in the end product. A higher
concentration of neem exerted a suppressive effect on the microbial population
as well as enzymatic activity. This study suggested that the addition of an
appropriate composition of neem leaves as one of the raw materials for
vermicomposting would potentially enhance the performance of vermicompost as
biofertilizer as well as biopesticide.
Keywords: Biopesticide;
chitinase; neem leaf; protease; β-1,3-glucanase
ABSTRAK
Kebimbangan yang semakin meningkat mengenai kesan negatif racun perosak sintetik telah menyebabkan pencarian kaedah alternatif kawalan perosak. Oleh itu, pengkomposan campuran tandan buah kosong kelapa sawit dan daun semambu (Azadirachta indica) yang diketahui mempunyai nilai racun perosak telah menarik perhatian dan lebih bermakna untuk dikaji. Kajian ini dilakukan untuk menilai aktiviti kitinase, protease dan β-1,3-glukanase vermikompos yang berasaskan daun semambu sebagai petunjuk sifat biokawalannya. Jumlah populasi mikroorganisma bagi vermikompos yang berbeza daripada segi komposisinya juga telah dikaji. Hasil kajian menunjukkan peningkatan populasi mikroorganisma, aktiviti kitinase dan protease
pada produk akhir yang mempunyai 10% daun semambu. Kepekatan semambu yang lebih tinggi memberi kesan penindasan terhadap populasi mikroorganisma dan juga aktiviti enzim. Kajian ini mencadangkan bahawa penambahan komposisi daun semambu yang sesuai sebagai salah satu bahan mentah untuk pengkomposan berpotensi meningkatkan prestasi vermikompos sebagai baja dan racun perosak biologi.
Kata kunci: Daun semambu; kitinase;
protease; racun perosak biologi; β-1,3-glukanase
REFERENCES
Aira, M., Monroy, F. & Dominguez, J. 2006. Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose
decomposition during vermicomposting. Microbial
Ecology 52(4): 738-747.
Akel,
H., Al-Quadan, F. & Yousef, T.K. 2009.
Characterization of a purified thermostable protease
from hyperthermophilic Bacillus strain HUTBS71. European
Journal of Scientific Research 31(2): 280-288.
Benitez, E., Sainz, H., Melgar, R. & Nogales, R. 2002. Vermicomposting of a
lignocellulosic waste from olive oil industry: A pilot scale study. Waste Manage & Research 20(2):
134-142.
Chae,
D.H., Jin, R.D., Hwangbo,
H., Kim, Y.W., Kim, Y.C., Park, R.D., Krishnan, H.B. & Kim, K.Y. 2006.
Control of late blight (Phytophthora capsici) in pepper plant with a compost containing
multitude of chitinase-producing bacteria. BioControl 51: 339-351.
Chaudhary, S., Kanwar, R.K., Sehgal, A., Cahill, D.M., Barrow,
C.J., Sehgal, R. & Kanwar, J.R. 2017. Progress on Azadirachta indica based biopesticides in replacing
synthetic toxic pesticides. Frontiers in
Plant Science 8: 610.
Coventry, E. & Allan, E.J. 2001. Microbial and chemical
analysis of neem (Azadirachta indica):
Notes on antimicrobial activity. Phytoparasitica 29: 441-450.
Devi, S.H., Vijayalakshmi, K., Jyotsna, K.P., Shaheen,
S.K., Jyothi, K. & Rani, M.S. 2009. Comparative assessment in enzyme
activities and microbial populations during normal
and vermicomposting. Journal of
Environmental Biology 30(6): 1013-1017.
Gajalakshmi,
S. & Abbasi, S.A. 2004. Neem leaves as a source of fertilizer-cum-pesticide
vermicompost. Bioresource Technology 92(3): 291-296.
Garcia, C., Hernandez, T., Costa, F. & Ceccanti,
B. 1994. Biochemical parameters in soils regenerated by addition of organic
wastes. Waste Management & Research 12(6):
457-466.
Gopal, M., Gupta, A., Arunachalam, V. & Magu,
S.P. 2007. Impact of azadirachtin, an insecticidal
allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresource Technology 98(16):
3154-3158.
Govindachari,
T.R., Suresh, G., Geetha Gopalakrishnan, Masilamani,
S. & Banumathi, B. 2000. Antifungal activity of
some tetratriterpenoids. Fitoterapia 71(3): 317-320.
Herigstad,
B., Hamilton, M. & Heersink, J. 2001. How to
optimize the drop plate method for enumerating bacteria. Journal of Microbiological Methods 44(2): 121-129.
Jadhav, H.P. & Sayyed, R.Z. 2016. Hydrolytic enzymes of rhizospheric microbes in crop protection. MedCrave Online Journal of Cell Science & Report 3(5): 135-136.
Kiyasudeen,
K., Jessy, S.R.S. & Ibrahim, M.H. 2014. Earthworm's gut as reactor in
vermicomposting process: A mini review. International
Journal of Scientific and Research Publications 4(7): 1-6.
Ladd, J.N. & Butler, J.H. 1972. Short-term assays of soil
proteolytic enzyme activities using proteins and dipeptide derivitives as substrates. Soil Biology and
Biochemistry 4(1): 19-30.
Lazcano,
C., Gomez-Brandon, M. & Dominguez, J. 2008. Comparison of the effectiveness
of composting and vermicomposting for the biological stabilization of cattle
manure. Chemosphere 72(7): 1013-1019.
Loh,
K.E., Aziz, N.A.A., Kok, H.Y., Mustafa, M., Ismail,
I.S. & Zainudin, N.A.I.M. 2012. Potential of neem
leaf-empty fruit bunch-based vermicompost as biofertiliser-cum-biopesticide:
Chemical properties, humic acid content and enzymes
(protease and phosphatase) activity in vermicompost (Part I). Scientific Research and Essays 7(42):
3657-3664.
Lokanadhan,
S., Muthukrishnan, P. & Jeyaraman,
S. 2012. Neem products and their agricultural applications. Journal of Biopesticides 5(Supplementary): 72-76.
Macci,
C., Masciandaro, G. & Ceccanti,
B. 2010. Vermicomposting of olive oil mill wastewaters. Waste Management & Research 28(8): 738-747.
Mistry, J., Mukhopadhyay, A.P. & Baur, G.N. 2015. Status of N
P K in vermicompost prepared from two common weed and two medicinal plants. International Journal of Applied Sciences
and Biotechnology 3(2): 193-196.
Padmavathiamma,
P.K., Loretta, Y.L. & Kumari, U.R. 2008. An experimental study of vermi-biowaste composting for agriculture soil improvement. Bioresource Technology 99(6):
1672-1681.
Palta,
R.K. & Bhatnagar, R.K. 2007. Vermiculture: A technology to manage solid
wastes. In Earthworms for Solid Waste Management, edited by Singh, S.M. India,
International Book Distributing Co. pp. 17-50.
Pathma,
J. & Sakthivel, N. 2012. Microbial diversity of vermicompost bacteria that
exhibit useful agricultural traits and waste management potential. Springerplus 1:
26.
Pitson,
S.M., Seviour, R.J. & Mcdougall,
B.M. 1996. Proteolytic inactivation of an extracellular (1🡪3)-β-glucanase from the fungus Acremonium persicinum is associated with growth at neutral or alkaline medium pH. FEMS Microbiology Letters 145(2):
287-293.
Poulsen, P.H.B., Moller, J. & Magid,
J. 2008. Determination of a relationship between chitinase activity and
microbial diversity in chitin amended compost. Bioresource Technology 99(10): 4355-4359.
Uz,
I. & Tavali, I.E. 2014. Short-term effect of
vermicompost application on biological properties of an alkaline soil with high
lime content from Mediterranean region of Turkey. The Scientific World Journal 2014: 1-11.
Vivas,
A., Moreno, B., Garcia-Rodiguez, S. & Benitez, E.
2009. Assessing the impact of composting
and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill
waste. Bioresource Technology 100(3):
1319-1326.
Yardim,
E.N. & Edwards, C.N. 2003. Effects of organic and synthetic fertilizer
sources on pest and predatory insects associated with tomatoes. Phytoparasitica 31(4): 324-329.
Yasir, M., Aslam, Z., Kim, S.W., Lee, S.W., Jeon, C.O. &
Chung, Y.R. 2009. Bacterial community composition and chitinase gene diversity
of vermicompost with antifungal activity. Bioresource
Technology 100(19): 4396-4403.
*Corresponding author; email: azwady@upm.edu.my
|