Sains Malaysiana 50(5)(2021): 1297-1307

http://doi.org/10.17576/jsm-2021-5005-10

 

Vortex Assisted Liquid-Liquid Microextraction with Back Extraction of Repaglinide, Glibenclamide and Glimepiride in Water Samples

(Mikro Pengekstrakan Berbalik Cecair-Cecair Berbantu Vorteks bagi Repaglinida, Glibenclamida dan Glimepirida dalam Sampel Air)

 

SOHAIB JUMAAH OWAID LUHAIBI1, NOORFATIMAH YAHAYA2, ANAS ALSHISHANI3, MAIZATUL NAJWA JAJULI4 & MAZIDATULAKMAM MISKAM1*

 

1School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

 

2Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Pulau Pinang, Malaysia

 

3Faculty of Pharmacy, Zarqa University, 13132 Zarqa, Jordan

 

4Department of Chemistry, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjung Malim, Perak Darul Ridzuan, Malaysia

 

Received: 15 April 2020/Accepted: 1 October 2020

 

ABSTRACT

A new analytical method based on vortex-assisted liquid-liquid microextraction with back extraction (VALLME-BE) coupled with high performance liquid chromatography was developed for the simultaneous determination of antidiabetic drugs; repaglinide, glibenclamide, and glimepiride in water samples. Chromatographic separation was achieved using C18 column (250 × 4.6 mm × 5 µm) and methanol-phosphate buffer (pH3.7) in the ratio of 70:30 v/v as a mobile phase at a flow rate of 1 mLmin-1. VALLME-BE was performed using 200 μL of n-octane dispersed into the aqueous sample (10 mL) with the aid of vortexing agitation. Then, the analytes were back-extracted from the organic solvent to 0.05 M NaOH (40 µL). Under these conditions, enrichment factor of 155-fold was achieved. The developed VALLME-BE method showed excellent linearity in the range of 30 to 1000 µgL-1 with limit of detection (LOD) of 0.41-1.66 µgL-1 and limit of quantification (LOQ) of 1.38-5.54. 41-1.66 µgL-1. VALLME-BE was applied for the determination of repaglinide, glibenclamide and glimepiride in water samples with the recoveries ranged from 83-109%. The relative standard deviation for inter-day and intra-day precision was less than 9.9%.

 

Keywords: Glibenclamide; glimepiride; HPLC-UV; repaglinide and vortex assisted liquid-liquid microextraction with back extraction

 

ABSTRAK

Suatu kaedah analitikal yang baharu berdasarkan pengekstrakan berbalik - mikro pengekstrakan cecair-cecair berbantu vorteks (VALLME-BE) digandingkan dengan kromatografi cecair berprestasi tinggi telah dibangunkan untuk penentuan serentak ubat anti-diabetik; repaglinida, glibenklamida dan glimepirida di dalam sampel air. Pemisahan kromatografi telah dicapai menggunakan turus C18 (250 × 4.6 mm × 5 µm) dan penimbal methanol-fosfat (pH3.7) dengan nisbah 70:30 v/v sebagai fasa bergerak pada kadar aliran 1 mLmin-1. VALLME-BE telah dilakukan dengan menggunakan 200 μL n-oktana yang disebarkan ke dalam sampel akues (10 mL) dengan bantuan pengadukan. Kemudian, pengekstrakan berbalik dilakukan terhadap analit daripada pelarut organik kepada 0.05 M NaOH (40 µL). Di bawah keadaan optimum, faktor pengayaan sebanyak 155-lipat telah dicapai. Kaedah VALLME-BE yang dibangunkan telah menunjukkan kelinearan yang baik dalam julat 30 hingga 1000 µgL-1 dengan had pengesanan (LOD) sebanyak 0.41-1.66 µgL-1 dan had pengkuantitian (LOQ) sebanyak 1.38-5.54 µgL-1. VALLME-BE digunakan untuk pengekstrakan repaglinida, glibenklamida dan glimepirida dengan julat pengembalian semula adalah 83-109%. Sisihan piawai relatif untuk inter-hari and intra-hari mempunyai kepersisan kurang daripada 9.9%.

 

Kata kunci: Glibenklamida; glimepirida; HPLC-UV; repaglinida dan pengekstrakan berbalik - mikro pengekstrakan cecair-cecair berbantu vortex

 

REFERENCES

Abdallah, M.A., Nguyen, K., Ebele, A.J., Atia, N.N., Ali, H.R.H. & Harrad, S. 2019. A single run, rapid polarity switching method for determination of 30 pharmaceuticals and personal care products in waste water using q-exactive orbitrap high resolution accurate mass spectrometry. Journal of Chromatography A 1588: 68-76.

AbuRuz, S., Millership, J. & McElnay, J. 2005. The development and validation of liquid chromatography method for the simultaneous determination of metformin and glipizide, gliclazide, glibenclamide or glimperide in plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 817(2): 277-286.

AbuRuz, S., Millership, J. & McElnay, J. 2003. Determination of metformin in plasma using a new ion pair solid phase extraction technique and ion pair liquid chromatography. Journal of Chromatography B 798(2): 203-209.

Al-Odaini, N.A., Zakaria, M.P., Yaziz, M.I. & Surif, S. 2010. Multi-Residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography - tandem mass spectrometry. Journal of Chromatography A 1217(44): 6791-6806.

Alshishani, A., Makahleh, A., Yap, H.F., Gubartallah, E.A., Salhimi, S.M. & Saad, B. 2016. Ion-pair vortex assisted liquid-liquid microextraction with back extraction coupled with high performance liquid chromatography-UV for the determination of metformin in plasma. Talanta 161: 398-404.

Bojarska, J., Fruziński, A., Sieroń, L. & Maniukiewicz, W. 2019. The first insight into the supramolecular structures of popular drug repaglinide: Focus on intermolecular interactions in antidiabetic agents. Journal of Molecular Structure 1179: 411-420.

Çabuk, H. & Köktürk, M. 2013. Low density solvent-based dispersive liquid-liquid microextraction for the determination of synthetic antioxidants in beverages by high-performance liquid chromatography. The Scientific World Journal 2013: 1-8.

Chen, L., Xiu, R., Wang, H., Wang, L., Wu, G., Liang, J. & Han, X. 2019. Simultaneous quantification of ten oxysterols based on LC-MS/MS and its application in atherosclerosis human serum samples. Chromatographia 82(2): 553-564.

El-Zaher, A.A., Elkady, E.F., Elwy, H.M. & Saleh, M.A. 2016. Simultaneous determination of metformin, glipizide, repaglinide, and glimepiride or metformin and pioglitazone by a validated LC method: Application in the presence of metformin impurity (1-cyanoguanidine). Journal of AOAC International 99(4): 957-963.

Fachi, M.M., Cerqueira, L.B., Leonart, L.P., De Francisco, T.M.G. & Pontarolo, R. 2016. Simultaneous quantification of antidiabetic agents in human plasma by a UPLC-QToF-MS method. PLoS ONE 11(12): 1-17.

Feng, T., Xu, X., Du, M., Tan, M., Qin, L. & Zhu, B. 2017. Simultaneous determination of glyoxal, methylglyoxal and diacetyl in beverages using vortex-assisted liquid-liquid microextraction coupled with HPLC-DAD. Analytical Methods 9(16): 2445-2451.

Forouhi, N.G. & Wareham, N.J. 2014. Epidemiology of diabetes. Medicine (Abingdon) 42(12): 698-702.

Grabic, R., Fick, J., Lindberg, R.H., Fedorova, G. & Tysklind, M. 2012. Multi-residue method for trace level determination of pharmaceuticals in environmental samples using liquid chromatography coupled to triple quadrupole mass spectrometry. Talanta 100: 183-195.

Gros, M., Rodríguez-Mozaz, S. & Barceló, D. 2012. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem. Journal of Chromatography A 1248: 104-121.

Gumieniczek, A. & Berecka, A. 2016. Analytical tools for determination of new oral antidiabetic drugs, glitazones, gliptins, gliflozins and glinides, in bulk materials, pharmaceuticals and biological samples. Open Chemistry 14(1): 215-242.

Ho, E.N.M., Yiu, K.C.H., Wan, T.S.M., Stewart, B.D. & Watkins, K.L. 2004. Detection of anti-diabetics in equine plasma and urine by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 811(1): 65-73.

Ibarra-Costilla, E., Cerda-Flores, R.M., Dávila-Rodríguez, M.I., Samayo-Reyes, A., Calzado-Flores, C. & Cortés-Gutiérrez, E.I. 2010. DNA damage evaluated by comet assay in mexican patients with type 2 diabetes mellitus. Acta Diabetologica 47(1): 111-116.

Kasprzyk-Hordern, B., Dinsdale, R.M. & Guwy, A.J. 2007. Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography - positive electrospray ionisation tandem mass spectrometry. Journal of Chromatography A 1161(1-2): 132-145.

Lian, Y., Qiu, X. & Yang, Y. 2014. Vortex-assisted liquid-liquid microextraction combined with hplc for the simultaneous determination of five phthalate esters in liquor samples. Food Analytical Methods 7(3): 636-644.

Loos, R., Carvalho, R., António, D.C., Comero, S., Locoro, G., Tavazzi, S., Ghiani, B.P.M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fick, J., Lindberg, R.H., Schwesig, D. & Gawlik, B.M. 2013. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research 47(17): 6475-6487.

López-serna, R., Pérez, S., Ginebreda, A., Petrovi, M. & Barceló, D. 2010. Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction - liquid chromatography-electrospray - tandem mass spectrometry. Talanta 83(2): 410-424.

Makahleh, A., Yap, H.F. & Saad, B. 2015. Vortex-assisted liquid-liquid-liquid microextraction (VALLLME) technique: A new microextraction approach for direct liquid chromatography and capillary electrophoresis analysis. Talanta 143: 394-401.

Martín, J., Buchberger, W., Santos, J.L., Alonso, E. & Aparicio, I. 2012. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 895-896: 94-101.

Mokhtar, S.U., Kulsing, C., Althakafy, J.T., Kotsos, A., Drummer, O.H. & Marriott, P.J. 2020. Simultaneous analysis of drugs in forensic cases by liquid chromatography-high-resolution orbitrap mass spectrometry. Chromatographia 83(1): 53-64.

Namieśnik, J., Spietelun, A. & Marcinkowski, L. 2015. Green sample preparation techniques for chromatographic determination of small organic compounds. International Journal of Chemical Engineering and Applications 6(3): 215-219.

Nannou, C.I., Kosma, C.I. & Albanis, T.A. 2015. Occurrence of pharmaceuticals in surface waters: Analytical method development and environmental risk assessment. International Journal of Environmental Analytical Chemistry 95(13): 1242-1262.

Omran, N.H., Wagdy, H.A., Abdel-Halim, M. & Nashar, R.M.E. 2019. Validation and application of molecularly imprinted polymers for SPE/UPLC-MS/MS detection of gemifloxacin mesylate. Chromatographia 82(11): 1617-1631.

Pizarro, C., Pérez-Del-Notario, N., Sáenz-Mateo, A. & González-Sáiz, J.M. 2014. A simple and sensitive vortex assisted liquid-liquid microextraction method for the simultaneous determination of haloanisoles and halophenols in wines. Talanta 128: 1-8.

Radke, M. 2010. Fate of pharmaceuticals in the environment and in water treatment systems. Toxicological & Environmental Chemistry 92(1): 209.

Selahle, S.K. & Nomngongo, P.N. 2020. Determination of fluoroquinolones in the environmental samples using vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. International Journal of Environmental Analytical Chemistry 100(3): 282-294.

Siddiqui, S. 2014. Depression in type 2 diabetes mellitus - A brief review. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 8(1): 62-65.

Yiantzi, E., Psillakis, E., Tyrovola, K. & Kalogerakis, N. 2010. Vortex-assisted liquid-liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 80(5): 2057-2062.

 

*Corresponding author; email: mazidatul@usm.my

 

 

 

 

previous